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In 2010 almost 50 % of the European women and nearly 60 % of the European men had 

overweight (BMI>25 kg/m2) or obesity (BMI>30 kg/m2) based on the classification of the 

World Health Organization 1. Worldwide, this prevalence reached 40 % in 2013 (~2.5 

billion people) 2,3. The increasing obesity prevalence is one of the major health concerns of 

our society, since overweight and obesity increase the risk for developing type 2 diabetes 

mellitus (T2DM) 4 and cardiovascular diseases (CVD) 5. Additionally, obesity is associated 

with a variety of cancers 6,7, mental diseases 8, a reduced functional mobility and lower 

quality of life 9. According to the traditional concept, obesity is the consequence of a 

dysbalance in energy intake, energy expenditure and energy excretion. Excessive fat 

accumulation in adipose tissue 10, the liver 11 and skeletal muscle 12 associates with insulin 

resistance and inflammation, which are central elements in the development of T2DM and 

CVD 13,14.  

To prevent the development of obesity and associated cardiometabolic and inflammatory 

diseases, lifestyle interventions are the preferred treatment to achieve (negative) energy 

balance and prevent metabolic complications, but are not effective in all participants 15,16. 

Moreover, long-term weight maintenance requires sustained macronutrient balance 17. For 

this reason, nutrient and substrate interactions are pertinent issues to be considered in body 

weight regulation. Importantly, protein and carbohydrate balance are regulated more 

closely than fat balance 17. Thus, the regulation of fat metabolism and balance is an 

important determinant for both body weight control and metabolic health 18.  

A possible strategy to affect lipid catabolism may be supplementation with dietary 

polyphenols. Polyphenols are natural components of plants that have been first identified as 

antioxidants, but more recently, supplementation studies with polyphenols have shown 

promising effects on lipid catabolism, including lipolysis and fat oxidation, thereby 

reducing ectopic fat accumulation and improving insulin sensitivity in rodents. Moreover, 

consumption of polyphenol-rich products such as green tea, red wine and soy has been 

associated with a reduced risk for developing obesity and related cardiometabolic diseases 

in humans. In intervention studies, effects of single polyphenol supplementation are not yet 

convincing. 

In this introduction, first the organ crosstalk in substrate and energy metabolism will be 

discussed (Figure 1.1), with focus on the adipose tissue, the liver, skeletal muscle and gut 

microbiota in the development of obesity-related metabolic impairments and insulin 
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resistance. In the second part, the potential benefits of polyphenol supplementation on 

substrate metabolism, in particular fatty acid metabolism, and insulin sensitivity will be 

addressed. 

Inter-organ crosstalk in substrate metabolism  

All organs have distinct functions and, therefore, distinct requirements to their source of 

energy. Whereas the brain and red blood cells, amongst others, consume only glucose 19, 

skeletal muscle, the liver and adipose tissue switch between glucose and fat oxidation, 

dependent on substrate availability. The provision and utilization of energy-rich substrates, 

mainly carbohydrates and fats, is coordinated within the body through an inter-organ 

crosstalk that is tightly regulated and capable of adapting to varying conditions.  

Chronic energy oversupply overwhelms the capacity of adipose tissue to store energy as fat 

and causes tissue dysfunction, which is characterized by a reduced lipid buffering capacity 
20. Consequently, lipid clearance and postprandial suppression of lipolysis are impaired and 

lipids spillover in the circulation and accumulate in the liver and skeletal muscle. In the 

liver, increased lipid uptake of plasma free fatty acids (FFA) and chylomicron-remnants 

may cause lipid accumulation, which is associated with increased glucose and very low-

density lipoprotein (VLDL) -triacylglycerol (TAG) output 21. Skeletal muscle is one of the 

most important organs with respect to whole-body glucose homeostasis, since it is 

responsible for about 80 % of insulin-stimulated glucose disposal 22. Randle et al. 23 

proposed that increased plasma FFA concentrations induce disruptions in skeletal muscle 

glucose metabolism, which may lead to impaired glucose tolerance and insulin resistance. 

Although this model needs to be adjusted by factors such as mitochondrial function and 

inflammation, the postulated concept of substrate competition and lipotoxicity causing 

insulin resistance still holds true. Paradoxically, this model does not apply to conditions of 

insulin resistance, in which despite high lipid availability, muscle glucose oxidation is 

increased during fasting conditions, highlighting the importance of the interaction between 

substrates, since glucose availability may be also increased 24-27. An increased uptake of 

systemic lipids as well as an impaired capacity to adjust fat oxidation to fatty acid supply 

(metabolic inflexibility) may contribute to accumulation of detrimental lipid intermediates, 

thereby inducing lipotoxicity and insulin resistance 28. In insulin resistant conditions, 

processes such as intracellular lipid turnover 29-33, adipogenesis 34 and protein anabolism 35 
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are impaired. Hyperglycemia and hyperlipidemia may cause glucotoxicity and lipotoxicity 

also in pancreatic beta-cells 36,37 and the nervous system 38,39. 

Over the past decade, the gut microbiota has been recognized as a metabolic organ with 

significant impact on host energy metabolism and insulin sensitivity 40,41. The gut 

microbiota produces short-chain fatty acids, is involved in bile acid metabolism and 

induces hormonal secretion into the circulation, all of which may have a significant impact 

on energy and substrate regulation 42.  

 

Figure 1.1. Inter-organ crosstalk 

Substrate fluxes between different organs. Bold font and arrows indicate increased plasma 
concentrations and substrate fluxes in obese, insulin resistant humans. BA, bile acids; CM, 
chylomicron; FFA, free fatty acids; TAG, triacylglycerol; VLDL, very low density lipoprotein; 
SCFA, short-chain fatty acids; scAT subcutaneous adipose tissue; vAT, visceral adipose tissue. 
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Pathophysiology of major metabolic organs in relation to 

insulin resistance 

Adipose tissue 

Within the last decade the adipose tissue gained importance in our view on human 

(patho)physiology, which goes beyond its capacity to store excessive energy intake in the 

form of fat 30,43,44. In most cases, obesity development has already occurred in childhood 

(<20 years): ~75 % of obese children (mean age 10) remained obese in adulthood (mean 

age 27) 45 and ~80 % of obese adults were obese during childhood 46. Disturbances in 

adipose tissue function in overweight, obese and insulin resistant subjects are characterized 

by an altered adipose tissue morphology, possibly caused by impaired adipogenesis, and an 

impaired lipid buffering capacity, which is regulated by lipid uptake, storage and release 

(lipolysis). Lastly, adipose tissue secretion of endocrine signals may be altered in 

dysfunctional adipose tissue and contribute to systemic low-grade inflammation. 

Adipose tissue morphology 

Whereas the generation rate of adipocytes differs between lean and obese children 47,48, 

adipocyte number remains stable during adulthood, independent of obesity 49. A constant 

number of fat cells have been reported in intervention studies of weight loss and weight 

(re)gain in adults, whereas fat cell volume significantly changed due to intervention 50,51, 

underscoring the tight regulation between adipogenesis and apoptosis/autophagy, which 

together define the turnover of adipose tissue, in which about 10 % of adipocytes are 

renewed every year 49. However, these measurements were performed within 2 years and 

might therefore not relate to cases, in which obesity is acquired over longer periods of time 

during adulthood. Interestingly, obese subjects had a lower adipocyte TAG turnover as 

compared to lean subjects 52,53. A low adipocyte and lipid turnover might reflect a reduced 

capacity to adapt to chronic environment changes (such as development of obesity) and was 

associated with obesity 52, familial combined hyperlipidemia 53 and hypertrophic, 

dysfunctional adipose tissue 54. 

When the energy intake exceeds expenditure in the long term, the excess energy is 

primarily stored in the adipose tissue. Expanding adipose tissue initially grows hypertrophic 
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55. Subsequent induction of adipogenic pathways triggers hyperplasia, thus creating more 

storage capacity 56. The limitation of hyperplasic growth determines adipose tissue 

morphology, adipose tissue function and its impact on other tissues 54,57-59. Indeed, the 

adipogenic potential predicted adipose tissue morphology in rodents, where a low 

adipogenic potential contributed to a reduced adipose tissue lipid buffering capacity and 

ectopic fat storage and insulin resistance 60. By stimulation of adipogenesis, the average 

adipocyte size remains constant, indicative for preserved metabolic function, despite the 

increase in adipose tissue mass 54,60. Moreover, increasing adipose tissue mass and therefore 

increasing buffering capacity by transplantation may ameliorate metabolic derangements 61. 

Contrary, a limited adipogenic potential has been found higher in obese diabetic patients as 

compared to obese subjects without metabolic complications 62-65. The process of 

adipogenesis is determined by intrinsic factors such as mitochondrial function 66, 

adipogenic progenitors 67,68, expression of transcription factors 69,70 and extrinsic factors 

such as the extracellular matrix and angiogenesis 71,72.  

Adipose tissue lipolysis 

Lipolysis describes the process of the hydrolysation of TAG into glycerol and FFA by 

adipose tissue TAG lipase (ATGL), hormone-sensitive lipase (HSL) and 

monoacylglyceride lipase (MGL). It has been suggested in 1963 73, that plasma FFA 

concentrations increase with accumulating fat mass, indicating an increased adipose tissue 

lipolysis in obese people, since approximately 90% of plasma FFA are derived from 

adipose tissue 74.  

However, more recent studies questioned whether an overload of FFA exists in obesity 75. 

In fact, the rate of appearance of FFA during basal conditions in obese subjects was even 

reduced as compared to lean individuals, when expressed per kg fat mass 76,77. In line, a 

reduced catecholamine-stimulated lipolytic response has been shown for obese compared to 

lean men 77,78. It is yet unclear, whether defects in lipolysis are a primary cause or a 

secondary effect in the etiology of obesity and related diseases 31,74. On the one hand, 

catecholamine-resistance may be primary in the etiology of obesity causing an impaired 

release of lipids from adipose tissue 31. This has been observed in childhood onset obesity 
79,80, and in first-degree relatives of obese subjects 81. On the other hand, a reduced lipolytic 
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activity has been suggested to be secondary to the development of obesity 52, and might be 

caused by systemic hyperinsulinemia that is frequently observed in obesity 82.  

In the postprandial state, lipolytic activity is inhibited by insulin. Although a lower anti-

lipolytic activity of insulin in obese as compared to lean subjects has been reported 82-84, 

McQuaid et al. 20 showed that systemic FFA concentrations over a 24 h-period are 

comparable between lean and abdominally obese men. This indicates that total FFA flux 

towards ectopic tissues may not be or is only slightly elevated. 

Adipose tissue lipid uptake and storage 

The adipose tissue stores lipoprotein-derived TAG by hydrolyzing FFA from TAG through 

the action of lipoprotein lipase (LPL) at the endothelial membrane 85. Hydrolyzed fatty 

acids are taken up by mammalian cells via passive diffusion or active transporters and are 

subsequently re-esterified into TAG 86. High insulin levels favor this lipid uptake and 

storage by inducing LPL 87, fatty acid transporters 88,89 and fatty acid synthase (FAS) 90. In 

slightly overweight (BMI=26 kg/m2), yet insulin sensitive (HOMA-IR=1.34) subjects, 

storage of dietary lipids in the postprandial state was increased 91, whereas in obese 

subjects, lipid buffering was impaired resulting in increased plasma concentrations of TAG 
20,92. This impaired clearance of dietary fat and subsequent release of FFA or TAG has been 

described as AT lipid spillover 93. 

Since dietary lipids are transported in the adipose tissue via capillaries, the delivery of 

lipoproteins and TAG to adipocytes is dependent on adipose tissue blood flow (ATBF) 94. 

The adipose tissue of obese is characterized by a reduced ATBF 95-101, which in turn may 

contribute to the reduced postprandial clearance of lipids, and a subsequent overflow of 

adipose tissue derived FFA and chylomicron- and VLDL-bound TAG to ectopic tissues 30. 

Endocrine role of adipose tissue 

Besides its buffering function in lipid metabolism, adipose tissue seems to exert an 

important role in peripheral metabolism and low-grade inflammation through the secretion 

of various endocrine peptides, cytokines and/or hormones (adipokines) with distinct and 

synergistic actions 30,44,102. 

The most prominent adipokines that have been discovered yet, are adiponectin and leptin 
103,104. Adiponectin is secreted by adipocytes and has insulin-sensitizing effects on muscle 

and liver cells 103,105. Adiponectin has stimulated insulin sensitivity, fat oxidation and 
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mitochondrial capacity in liver and skeletal muscle of healthy subjects, possibly mediated 

by AMPK and PPAR-α 106-108. Furthermore, adiponectin concentrations were associated 

with low adipose tissue mass in lean and obese humans 109-111 and low ectopic fat 

accumulation in obese women 112. In high-fat fed adiponectin-knock-out mice, adiponectin 

replacement prevented insulin resistance by reducing autophagy and oxidative stress 113.  

Contrary to adiponectin, leptin levels are positively associated with fat mass 104, more 

specific with hypertrophic adipose tissue 114,115. Leptin is mainly secreted by subcutaneous 

adipocytes and exerts its function in the hypothalamus as a non-acute satiety signal and 

stimulator of energy expenditure 116,117, thereby counteracting weight gain and subsequent 

metabolic disturbances as reviewed earlier 118. In more detail, leptin administration induced 

heat production, mitochondrial function and glucose tolerance in skeletal muscle of diet-

induced obese mice and ewes 119,120. These properties are best documented in (relative) 

leptin deficiency such as lipodystrophy 121-123. Human obesity is characterized by both 

elevated leptin concentrations as well as by a reduced action of the hormone both centrally 

and in the periphery (leptin resistance) 124.  

Hotamisligil and colleagues 125 first reported that TNF-α gene and protein expression were 

increased in adipose tissue of obese compared with lean subjects, indicating adipose tissue 

inflammation. Moreover, other adipose tissue-derived cytokines are altered in obese 

subjects, such as macrophage attracting protein 1 (MCP-1) and interleukin 6 (IL-6) 44,102,126. 

In hypertrophic adipocytes, the homeostatic capacity of various organelles is overwhelmed 

by a mechanical limitation and lipid overload 127. Consequently, newly synthesized 

unfolded proteins accumulate in the endoplasmic reticulum (ER) lumen and lead to the ER 

stress 128,129. In consequence, the unfolded protein response (UPR) is activated to support 

the ER in function 130. This activation is pivotal in order to maintain responsiveness to 

nutritional needs in adipose tissue 131, but coincides with an inflammatory response through 

the induction of oxidative, mitochondrial and ER stress 132,133. Additionally, the lipid-rich 

environment (FFA) may further stimulate inflammatory pathways through the activation of 

toll-like receptors and ceramide synthesis 134. 

Through the expression of MCP-1, macrophages are attracted to obese adipose tissue 135, in 

which the cell proportion of macrophages can increase from 10 % in non-obese up to 50 % 

in obese subjects 136. The primary purposes of macrophage infiltration are removal of cell 

debris, tissue remodeling and additional lipid buffer in order to reduce the lipid overload 
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137. However, in rodents, chronic lipid overload may induce macrophage polarization from 

M2 to M1 126,138, which themselves produce inflammatory cytokines to attract more 

macrophages and induce a vicious inflammatory cycle 139. In humans, macrophage 

phenotypes distinction may be more complex 44,140 and may be determined by other 

pathways than its classical activation 141.  

The local inflammatory milieu has a profound impact on adipose tissue metabolism. Via 

direct and indirect pathways, insulin signaling, lipid buffering and adipokine secretion are 

disturbed 142. The activation of c-Jun NH2-terminal kinase (JNK) and inhibitor of nuclear 

transcription factor κB kinase (IKK-β) are suggested as intracellular mediators of 

inflammatory signals, that impair insulin signaling by Ser-phosphorylation of insulin-

receptor substrate (IRS) and increase inflammatory response through the inflammasome 

and nuclear transcription factor κB (NFκB) 132. Moreover, inflammatory signals may 

increase rates of lipolysis and inhibit lipid storage, as indicated by animal studies 143. In 

conditions of lipid overload, this may indicate an adaptive mechanism to reduce lipid 

accumulation and ER stress, which was indeed shown to be reversible 144. 

This initially local inflammatory milieu is likely to spill over as long as it is not 

counteracted, thereby contributing to systemic low-grade inflammation, insulin resistance 

and lipotoxicity in several other tissues like skeletal muscle and the liver 30,44,142.  

Adipose tissue depot-differences 

Various studies show depot-differences for the impact on metabolic health in humans 145,146. 

With respect to upper-body fat, visceral adipose tissue (vAT) is more closely associated 

with the metabolic syndrome and cardiovascular risk factors than subcutaneous adipose 

tissue (scAT) 147-150. Interestingly, insulin resistance of scAT was associated with vAT mass 
151, suggesting that dysfunctional scAT may contribute to vAT accumulation. As discussed, 

insulin resistant scAT is characterized by increased FFA release and a reduced postprandial 

uptake of lipids. Storage of VLDL-TAG, formed from plasma FFA in the liver, was found 

comparable between adipose tissue sites in lean and obese women 152. Therefore, 

dysfunctional scAT may rather contribute to vAT accumulation through a compensatory 

buffering of dietary lipids in vAT 153,154.  

The proportion of FFA release from vAT to systemic concentrations during fasting 

conditions is relatively small as compared to scAT (~10 %), although this increases up to 
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40 % during insulin-mediated suppression of lipolysis 155. This indicates a more 

pronounced insulin resistance of vAT as compared to scAT. As vAT is localized between 

the gut and the liver, lipolytic FFA from vAT drain first into the liver and may contribute to 

hepatic lipid accumulation and insulin resistance 156. Indeed, vAT, not scAT, has been 

related to hepatic lipid accumulation in overweight and obese women 157. As discussed in 

more detail later in this introduction, FFA delivery to the liver as well as hepatic lipid 

accumulation stimulate VLDL-TAG output 158, and may therefore significantly contribute 

to postprandial lipid overflow to skeletal muscle 156. 

Lastly, there is accumulating evidence that macrophage infiltration in vAT of patients with 

obesity, metabolic syndrome or coronary artery disease indicates a more proinflammatory 

profile, that might also affect systemic inflammation 159. Regional differences in 

preadipocyte replication, differentiation, susceptibility to apoptosis or senescence, and gene 

expression may contribute to regional variation in adipose tissue function 67,160. Thus, scAT 

dysfunction may promote vAT lipid accumulation, as in other ectopic tissues. Increased 

vAT mass may cause hepatic insulin resistance and lipid overflow to other ectopic tissues. 

 

Liver  

The liver accounts for approximately 20 % of resting energy expenditure, and has a 

profound role in substrate metabolism 161. The liver takes up FFA linearly to their plasma 

concentration and by active facilitated transport by fatty acid transporters. Hepatic lipase 

and LPL-mediated hydrolysis of TAG may contribute to lipid influx into hepatocytes. In 

the cell, fatty acids are either stored into TAG, oxidized to provide energy and acetyl-CoA 

for gluconeogenesis, or secreted as esterified TAG within LDL/VLDL-particles.  

Whereas insulin leads to a reduction of plasma FFA and hepatic uptake, and may therefore 

reduce VLDL output 162, dietary lipids increase VLDL secretion 163,164. Although dietary 

TAGs, packed in chylomicrons, are first bypassing the liver via the lymphatic system, the 

impaired postprandial clearance of dietary lipids in obese adipose tissue results in higher 

TAG concentrations in the circulation and increased hepatic and muscle uptake 20,165. 

Additionally, the anti-lipolytic action of insulin is impaired in dysfunctional adipose tissue 

and may contribute substantially to increase plasma fatty acid concentrations and 

consequently fatty acid uptake in the liver, mainly in the postprandial phase 166. Although 
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whole-body fat oxidation seems increased over 24 hours in conditions of high lipid 

availability 167, this adaptive mechanism may not completely prevent hepatic lipid 

accumulation in obesity, as indicated by the strong correlation between obesity and liver fat 
168-170. As a consequence of hepatic lipid accumulation, and the production and secretion of 

lipid-rich lipoproteins (VLDL-TAG) are increased 20,158,165, which in turn contributes to 

increase cardiovascular disease risk 171,172. Within the liver, the accumulation of lipids and 

lipid metabolites, such as diacylglycerol 173 and ceramides 174, interferes with the insulin 

signaling pathway. Also, lipid accumulation may increase reactive oxygen species (ROS) 

that are generated as consequence of impaired or overloaded mitochondria 175. Due to the 

consequent induction of ER stress 176, inflammation 177 and insulin resistance, insulin fails 

to reduce hepatic glucose production, which may contribute to hyperglycemia 11. 

Hyperglycemia, in turn, has been shown to reduce hepatic fat oxidation in men and may 

consequently contribute to increase plasma TAG concentrations 178. 

 

Skeletal Muscle 

Skeletal muscle is the predominant tissue regarding whole-body insulin sensitivity, since it 

is responsible for 80 % of insulin-mediated glucose disposal 22. Furthermore, skeletal 

muscle accounts for 80 % of 24-h energy expenditure 179, which establishes it as a main 

target to tackle obesity. Disturbances in skeletal muscle fatty acid metabolism have been 

linked to the development of obesity and type 2 diabetes 12,13,32,33,180. Like in the adipose 

tissue and liver, a mismatch between lipid uptake and oxidation, as well as an impaired 

lipid turnover within skeletal muscle, contribute to muscle lipid accumulation and, 

consequently, metabolic dysfunction of skeletal muscle. 

Lipid uptake 

Lipid uptake was shown increased in insulin resistant subjects; most likely due to increased 

plasma TAG concentrations and the subsequent extraction in skeletal muscle 181. This may 

be, at least in part, be attributed to higher CD36-transporters within skeletal muscle, which 

facilitate lipid uptake 182. Besides an impaired TAG clearance in adipose tissue resulting in 

systemic lipid overflow, a reduced insulin-induced inhibition of skeletal muscle LPL 

activity may contribute to the higher muscle lipid uptake 183. Although chylomicron-TAGs 
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are the preferential substrate as compared to VLDL and plasma FFA under normal 

conditions 184, uptake of VLDL-TAG is increased in insulin resistant subjects 185. However, 

because both VLDL and chylomicrons share a common saturable binding mechanism 186, 

the net amount of TAG delivered to skeletal muscle may be more important than its 

fractions. Due to the impaired clearance in AT, plasma TAG remain elevated for a longer 

time and may further increase with the next meal 20.  

Skeletal muscle lipolysis 

As in adipose tissue, skeletal muscle lipolysis is also mainly determined by the actions of 

ATGL and HSL, of which the latter is inducible by β-adrenergic stimulation or by an 

increased activity of AMPK 31. In obese subjects, β–adrenergic stimulation of lipolytic 

activity in skeletal muscle is blunted 187,188. Recently, it has been proposed that the majority 

of lipids are first stored before they are hydrolyzed, dependent on the activity of lipolytic 

enzymes, highlighting the importance of lipolysis for oxidative metabolism and TAG 

accumulation 189,190. A reduced activation of PPARs by lipolytic products might contribute 

to a reduced mitochondrial capacity and may thereby impair fat oxidation 189,190. Recent 

data from our lab has shown that an impaired insulin-mediated suppression of muscle 

lipolysis in T2DM compared with age and BMI-matched normal glucose tolerant subjects 

was associated with the accumulation of membrane-saturated DAG and protein kinase C 

(PKC) activation, which was associated with insulin resistance 191. 

Lipid accumulation in skeletal muscle 

An oversupply of lipids that is not compensated by oxidation is stored into lipid droplets as 

TAG or lipid intermediates such as DAG, fatty acyl-CoA and ceramides. TAG storage 

might be a protection mechanism against the accumulation of detrimental lipid-

intermediates 192, and is per se not necessarily deleterious to insulin sensitivity of myocytes, 

which is indicated as the ‘athlete paradox’ 193. However, preferential storage of lipids in 

skeletal muscle may promote lipid accumulation and insulin resistance in the long term 194-

196. There are indications that lipogenesis is upregulated in skeletal muscle of extreme obese 

humans, resulting in an increased lipid accumulation and reduced fat oxidation 194. 

However, TAG synthesis has been shown be reduced in obesity and insulin resistance 
196,197, which leads to accumulation of DAG and ceramides. The accumulation of these 

lipid-intermediates has been related to inhibition of insulin signaling and a reduced 
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mitochondrial function 12,174. Noteworthy, muscle lipid turnover depends on the saturation 

of fatty acids, of which saturated fatty acids had the least favorable effect on lipid uptake, 

glucose tolerance and gene expression of oxidative pathways 198. More recently, it has been 

discovered that the location and saturation of bioactive lipid fractions as well as their 

turnover might be more important in relation to insulin signaling than the amount per se 
191,199,200. 

Substrate partitioning and substrate competition within the skeletal muscle 

To meet the complexity of changes in fuel oxidation, the concept of metabolic flexibility 

has been introduced, defined as the capacity to increase fat oxidation upon increased fatty 

acid availability and to switch between fat and glucose as the primary fuel source after a 

meal 29,201. According to the concept of metabolic flexibility, an increased availability of fat 

would enhance fat oxidation in order to prevent lipid accumulation 201. The compensatory 

increase was impaired in obese insulin resistant subjects, and may contribute to increased 

lipid storage and the accumulation of lipid intermediates 18,197,202-209. Moreover, an 

increased availability and uptake of extracellular lipids has been shown to reduce the 

oxidation of intracellular lipids and may thereby attribute to lipid accumulation 210. To 

which extent humans can adapt fat oxidation to an increased availability may at least partly 

be intrinsically determined 211,212. 

Under insulin-stimulated conditions the concept of metabolic flexibility describes the shift 

from fat oxidation to carbohydrate oxidation in the presence of insulin, reflected by an 

increased respiratory quotient (RQ) in the muscle 29. Both characteristics of metabolic 

flexibility, the capacity to dynamically stimulate and suppress fat oxidation, were positively 

related to insulin sensitivity 201,213. Already in 1991, Boden 214 demonstrated that increased 

plasma lipids are taken up in skeletal muscle cells and exert direct acute inhibitory effect on 

glucose metabolism in human muscles in hyperinsulinemic conditions.  

On the other hand, in human muscle a combination of hyperinsulinemia and hyperglycemia 

increases malonyl-CoA concentrations, inhibits functional carnitine-palmitoyl-transferase 1 

(CPT1) activity and consequently reduces mitochondrial lipid uptake and oxidation 204. 

Hyperglycemia, hyperinsulinemia and a reduced lipid oxidation have been shown in 

combination with an increased skeletal muscle content of malonyl-CoA, an allosteric 

inhibitor of mitochondrial FA transport, in rodent models of obesity and insulin resistance 
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215. Also, the chronic inhibition of insulin signaling by postprandial hyperlipidemia and 

lipid accumulation may contribute to an impaired postprandial metabolic flexibility in 

subjects with impaired glucose metabolism 213,216. Thus, nutrient overload and increased 

substrate competition result in mitochondrial indecision, impaired fuel switching and 

energy dysregulation 180. Moreover, metabolic inflexibility has been associated with 

mitochondrial dysfunction, insulin resistance and weight gain 18,217. Although intrinsic 

disturbances may predispose to metabolic inflexibility 18,218, lifestyle interventions or 

weight loss studies indicate that metabolic inflexibility (partly) improves after weight loss 
213,219,220.  

Fat oxidation and mitochondrial capacity  

A higher fasting muscle RQ may reflect metabolic inflexibility. Some studies found a 

negative relationship between whole body fasting RQ and in vivo mitochondrial function 

(Phospho-Creatine recovery) and skeletal muscle mitochondrial content in humans 26,217. 

An impaired mitochondrial respiration may be compensated by glycolytic ATP production, 

which would lead to a higher RQ. An increased fasting RQ was reported in insulin resistant 
24, insulin resistant offspring of T2DM patients 25 or diabetic subjects 26,27 as compared to 

healthy controls. Also, skeletal muscle oxidative capacity was reduced in diabetic and 

obese as compared to healthy (trained) subjects 221-223, which may contribute to reduce fat 

oxidation during moderate intensity exercise 224. Moreover, a parallel increase of fat 

oxidation and mitochondrial capacity that was observed after 9 months exercise training 

indicates that mitochondrial capacity may determine fat oxidation 225. Mitochondrial 

respiration is determined by energy demand (low ATP/ADP ratio) and to a lesser extent by 

substrate supply, as discussed by Muoio and Neufer 226. This is substantiated by respiration 

measurements before and after ADP supply in isolated skeletal muscle fibers 227. Physical 

activity increases energy demand, which leads to an increased ROS-induced stimulation of 

Ca2+/calmodulin-dependent protein kinase (CAMKII). CAMKII activates mitochondrial 

biogenesis and fat oxidation in healthy, obese, diabetic and aging subjects 220,228-232. In line 

with an increased mitochondrial capacity, exercise training increased submaximal ADP 

sensitivity of mitochondria 233. An increased ADP sensitivity implies that lower ADP 

concentrations induce the same extent of ATP generation through mitochondrial respiration 

with less activation of glycolytic enzymes (glycogen phosphorylase and pyruvate 
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dehydrogenase) fluxes, thereby maintaining fat oxidation. Interestingly, in diabetic rats a 

reduced ADP sensitivity was found 234. Noteworthy, in humans the relationship between fat 

oxidation and obesity 235 and insulin resistance 213 were studied on a whole-body level or in 

skeletal muscle (or corrected for muscle mass) 213,235. Other organs may have contributed to 

lower fasting fat oxidation as well, but this has not yet been investigated in such detail.  

Mitochondrial dysfunction and insulin sensitivity  

There is evidence that an impaired mitochondrial fat oxidation (capacity) contributes to the 

development of insulin resistance 236. However, to date no conclusive causal relationship 

between mitochondrial oxidative capacity and insulin sensitivity has been established in 

humans 237,238. Whereas insulin resistant subjects are mostly characterized by a low skeletal 

muscle oxidative capacity 223,239-242, others have found no relation between mitochondrial 

capacity and insulin action 243,244. Interestingly, not only mitochondrial function, but also 

mitochondrial size was found to be positively correlated to insulin sensitivity 245. As 

reviewed by Liesa and Shirihai 246, through fragmentation (fission) and elongation (fusion) 

mitochondria can modulate energy efficiency and prevent ROS emission despite high 

substrate availability. During increased energy demand, mitochondria increase in size and 

integrity to facilitate efficient energy production. In conditions of decreased substrate 

supply, transient fragmentation of mitochondria generates a network of smaller 

mitochondria with a low integrity. The low membrane potential leads to less energy 

wasting and may prevent ROS emission 247. However, during sustained nutrient excess, an 

increased proton motive force across the mitochondrial membrane increased ROS 

production, which induced inflammatory pathways, and may therefore contribute to 

mitochondrial dysfunction and insulin resistance 248,249. Additionally, autophagic recycling 

of mitochondria with low membrane potential is impaired by nutrient excess, which can 

contribute to accumulation of dysfunctional mitochondria 246,250.  

In conclusion, skeletal muscle fat oxidation is reduced in the obese insulin-resistant state. 

This impaired fat oxidation may contribute to the accumulation of lipid metabolites and 

may be driven by lipid supply from either extracellular or intracellular sources as well as 

intrinsic impairments in mitochondrial capacity. However, whether reduced mitochondrial 

function is causally related to insulin resistance or rather a consequence of the sedentary 

lifestyle needs to be investigated in more detail in future research. 
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Gut microbiota 

The gut microbiota, which consists of ~1014 bacteria, has gained increased attention in 

metabolic research over the last decade. The microbiota composition may be influenced by 

age 251, genetic predisposition 252, early life acquisition 253, dietary compounds (sweeteners 
254, pre- and probiotics 255 and macronutrient composition 256,257) and lifestyle (local 

environment 258, eating and defecation pattern 259). The gut and its resident microbiota may 

contribute to the development of obesity through their capacity to harvest energy by 

fermenting non-digestible fibers, which has been demonstrated in rodents 260,261. Also in 

humans, a significant association between bacterial composition and obesity has been 

reported by Ley et al. 262. More recently, various studies in humans have demonstrated that 

the gut microbiota composition 263,264, diversity 265,266 and richness 267 are associated with its 

host phenotype related to obesity, insulin resistance, T2DM, the immune system and 

nervous system, which has been reviewed more extensively elsewhere 268-273.  

Interestingly, it has been shown that manipulation of the gut microbiota by means of fecal 

transplantation 274 and antibiotics treatment 275 modulates peripheral insulin sensitivity in 

humans, however conflicting data exists 276. Although the impact of the microbiota has 

been reported in several studies, the understanding of possible mechanisms, by which the 

microbiota or specific species affect human metabolism, is yet evolving. The capacity of 

bacteria to ferment non-digestible food ingredients such as dietary fiber may contribute to 

energy harvesting, and thus an positive energy balance 277. While human data is still scarce 
276,278,279, evidence, based on rodent studies, suggests that short-chain fatty acid 42, bile acid 
280 and other metabolite 281 concentrations may modulate the metabolic effects that are 

induced by the microbiota composition. Besides their function as energy substrate, short-

chain fatty acids (SCFA) may modulate human substrate and energy metabolism through 

stimulation of hormonal release of GLP-1 and PYY 278,279, and additionally through direct 

peripheral effects on adipogenesis, lipolysis and lipid uptake 42. 

Moreover, the gut microbiota is involved in bile acid metabolism and bile acids in turn may 

affect microbiota composition 282. Because of their metabolic impact 280, modulation of bile 

acid profile may have an impact on host physiology, as has been shown in rodents 283. Bile 

acid modification has been shown to improve lipid profile und glucose homeostasis in 

humans 280, however the potential role of the gut microbiota needs to be elucidated.  
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Lastly, gut bacteria may modulate immunity and inflammation, and alterations in gut 

microbiota composition have been linked with metabolic endotoxemia 271. Through 

interactions with immune cells and the inflammasome within the intestinal mucosa, bacteria 

exert a profound regulatory role in the immune system 284-286. 

 

Prevention strategies 

Prevention and treatment strategies for obesity and related insulin resistance preferably 

include lifestyle intervention, focused on caloric restriction, a change in diet composition 

and an increased physical activity. Lifestyle interventions, according to general guidelines 

for diet and physical activity, have been shown to be effective in the prevention of obesity-

related diseases such as type 2 diabetes 15,16. Unfortunately, however, about 30 % of 

subjects do not respond and/or adhere to lifestyle interventions, which indicates the demand 

for new additional approaches to complement the success of lifestyle interventions.  

One approach to induce health benefits by means of dietary interventions is the 

supplementation of natural food ingredients, including polyphenols. Polyphenols are plant 

antioxidants that are synthesized as intrinsic defense mechanisms upon stress exposure and 

may exert protective effects against oxidative stress in consumers of these plants as well, 

which is described in the xenohormesis hypothesis 287,288. Among the most abundant and 

bioactive polyphenols in the human diet are epigallocatechin-3-gallate, resveratrol and soy 

isoflavones, which have been found in green tea 289, red wine and grapes 290, and soy 291, 

respectively. Originally, these have attracted attention for their anti-oxidant and anti-

carcinogenic effects 292-294. However, their application might go beyond these effects. 

Polyphenols may affect pathways of fatty acid catabolism, fat oxidation and insulin 

sensitivity. 

Green tea first gained attention because its consumption was shown negatively associated 

with cardiovascular diseases in humans 295,296. Later, the most abundant catechin in green 

tea, epigallocatechin-3-gallate, was implicated in the benefits of green tea on body weight 

control 297, possibly by stimulating 24-h energy expenditure and fat oxidation 298. 

Importantly, effects of epigallocatechin-3-gallate supplementation may be modulated by 

obesity 299, gender 300, and genetic predisposition 301. 
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By introduction of the ‘French paradox’ 302,303, resveratrol has attracted attention because a 

low risk for coronary heart diseases in the French population was associated with red wine 

consumption despite high fat intake 302 and because of its potential to inhibit oxidation of 

human LDL in vitro 303. Interestingly, resveratrol was found to improve markers of 

metabolic health in various model organisms 304-306, including obese humans 307. The 

benefits of resveratrol supplementation may depend on the dosage 308,309 and type of 

subjects 310. 

Although the beneficial effect of soy was first ascribed to its protein and fiber content 311, 

soy isoflavones have been attributed with a variety of health benefits related to 

osteoporosis, reproduction and infant growth 312-317. More recently, the phytoestrogenic 

activity of isoflavones has been implicated in the prevention of cardiometabolic diseases as 

well 318-320. Beneficial effects on insulin sensitivity have been found in postmenopausal 

women 321, but not in premenopausal women or men yet. 

In conclusion, dietary polyphenols are associated with a reduced risk for cardiometabolic 

diseases. However, literature on the impact of polyphenols on energy and substrate 

metabolism in humans is not consistent. In the next section, the effects of supplementation 

of specific polyphenols, namely epigallocatechin-3-gallate, resveratrol and soy isoflavones, 

in Caucasian subjects will be discussed in more detail. 

 

Epigallocatechin-3-gallate (EGCG) 

Body weight control and energy expenditure 

In Caucasian overweight and obese subjects, EGCG supplementation reduced body weight, 

fat mass or fat percentage in most 322-325, but not all studies 326,327. The potential of EGCG to 

modulate body weight control has further been shown in combination with exercise 325 and 

during weight maintenance after weight loss 328, although data are not consistent 329-332.  

The benefit of EGCG supplementation on body weight control has been shown in rodents 

receiving obesogenic diets 333-339. Lipid accumulation in adipose tissue and the liver was 

decreased by EGCG supplementation in these animals by decreasing energy uptake 334,335 

and by increasing adipose tissue lipolysis, adipose tissue and skeletal muscle uncoupling 

and skeletal muscle fat oxidation 335-338. Direct effects of EGCG on adipocyte gene 



Chapter 1 

26 

expression related to lipolysis, fat oxidation and uncoupling have been confirmed in vitro 
340-342.  

In humans, green tea extract (GTE) supplementation for 12 weeks indeed reduced lipid 

absorption, although no effect on body weight was found 343. No human in vivo data is 

available regarding the effect of EGCG supplementation on lipolysis. With respect to 

energy expenditure (EE), Dulloo and colleagues 298 could show that supplementing GTE 

(270 mg EGCG, 150 mg caffeine) increased 24 h-EE in 10 healthy men versus caffeine 

alone (150 mg). Surprisingly, an earlier reported acute effect of caffeine on metabolic rate 

was not found in this study 344. In contrast, Berube-Parent et al. 345 showed that EGCG had 

no additional benefit to caffeine supplementation on EE. Hursel et al. 346 reported a 

thermogenic effect of decaffeinated green tea supplements on resting EE (250 mg EGCG), 

whereas no effect was observed on postprandial EE 299,346. These differences may be 

explained by a variation in fat mass, since responders to EGCG supplementation (on resting 

and postprandial EE) had higher fat mass than subjects that did not respond 299, or the 

activity of catechol-O-methyl-transferase (COMT) 301, which is EGCG’s suggested target 

enzyme 347. Finally, Boschmann and Thielecke 348,349 did not observe significant increases 

in EE in overweight subjects following 2 days of EGCG supplementation (300 mg/d).  

To conclude, short-term studies showed possible benefits of EGCG on EE in lean, but not 

in overweight subjects. To induce changes in body mass, EE must be stimulated over a 

longer period of time. To our knowledge, three studies have addressed the more long-term 

effects of EGCG on EE. While in two studies with lean subjects, no effect was observed 
325,350, EGCG supplementation increased EE in female multiple sclerosis patients as 

compared to placebo, but not in male patients (women: 25.9 kg/m2; men: 24.2 kg/m2, 

P=N.S.) 300. Subjects were limited in their caffeine consumption (<300 mg/d) and groups 

showed no differences in norepinephrine concentrations, but a differential effect on the 

autonomic and endocrine nervous system was suggested to account for the different effect 

of EGCG-supplementation between gender, but no data was provided to support this 

hypothesis.  

Fat oxidation and insulin sensitivity 

Interestingly, short-term EGCG supplementation stimulated fat oxidation during 

fasting/nocturnal 298,301 and postprandial/diurnal conditions (meal contained 35-40 % of 
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energy intake (energy%)) 298,348,349 but studies are not consistent 299,345,351,352. Also, after 4 

weeks supplementation with decaffeinated GTE (dGTE) in lean subjects 325 and after 12 

weeks with EGCG in female, not in male, multiple sclerosis patients 300, fat oxidation was 

increased during fasting and postprandial conditions (35 energy% fat). The stimulation of 

lipid oxidation by EGCG and GTE may have contributed to an improved lipoprotein status 

and fasting and postprandial plasma TAG concentrations in humans 300,323,326, since plasma 

lipids are preferentially oxidized, as discussed 210. In rodents, EGCG supplementation 

indeed reduced adipose tissue inflammation and hepatic lipid accumulation and increased 

insulin sensitivity 337-339,353,354. The evidence for an insulin sensitizing effect of EGCG in 

humans is, however, scarce. Improved insulin sensitivity (reduction in HOMA-IR) after 12 

weeks GTE supplementation has been shown in one study 326, whereas the majority of 

studies found no effect on insulin sensitivity in overweight and obese subjects 300,322,323,327. 

Still, recent studies in rodents support the potential of EGCG in the prevention of insulin 

resistance 355. 

 

Resveratrol 

Mitochondrial capacity and substrate oxidation 

Rodent studies have shown that resveratrol may stimulate mitochondrial biogenesis 304,356. 

Indeed, resveratrol has been shown to activate NAD-dependent deacetylase sirtuin-1 

(SIRT1) 357 and 5' adenosine monophosphate-activated protein kinase (AMPK) 358 and 

inhibit phosphodiesterase (PDE) 359, which led to an increased peroxisome proliferator-

activated receptor gamma coactivator 1-α (PGC1-α) activity 357-359, the master regulator of 

mitochondrial biogenesis and function 360,361. 

In humans, the potential of resveratrol to improve substrate metabolism is less consistent. 

While no effects on body weight or fat mass have been reported in humans yet 307,309,310,362-

364, Resveratrol supplementation appears to have pronounced effects on substrate 

metabolism. In obese men supplementation of 150 mg resveratrol (resVida®) for 30 days 

significantly increased ex vivo mitochondrial oxidative capacity as compared to placebo 307. 

Furthermore, 2 g of grape polyphenols (~1 mg resveratrol) prevented a fructose-induced 

decrease of mitochondrial and oxidative gene expression in skeletal muscle 365. 
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Nevertheless, others have not found these beneficial effects of resveratrol supplementation 

for reasons that remain unclear (Yoshino et al. 310: 75 mg/d (Temmer Werke), 12 weeks, 30 

lean women; Poulsen et al. 309: 1500 mg/d (Fluxome), 4 weeks, 24 obese men; Olesen et al. 
362: 250 mg/d (Fluxome), 8 weeks, 16 overweight men; van der Made et al. 366: 150 mg/d 

(resVida®), 4 weeks, 45 men and women (25M, 20F); Chachay et al. 308: 3000 mg/d 

(Biotivia), 8 weeks, 20 men).  

In skeletal muscle, the increased capacity to oxidize fat after resveratrol supplementation in 

humans 307 may contribute to improve metabolic flexibility and insulin sensitivity, as 

discussed earlier. Indeed, resveratrol supplementation increased the respiratory quotient 

(RQ) during daytime on an isocaloric diet (33 energy% fat) as compared to placebo, 

indicative for an increased insulin-stimulated carbohydrate oxidation, whereas nocturnal 

RQ was not affected 307.  

Adipose tissue morphology 

Interestingly, resveratrol supplementation has also been shown to alter adipose tissue 

morphology, with a reduction in mean adipocyte size 370. As mentioned earlier, a decrease 

in adipocyte size is associated with an improved metabolic and endocrine function 30. In 

that respect, the observed inhibition of postprandial lipolysis after resveratrol 

supplementation may indicate increased adipose tissue insulin sensitivity, and the reduction 

in plasma TNF-α concentrations may also reflect improvement of the endocrine function of 

adipose tissue 307. 

Insulin sensitivity 

Decreased glucose, insulin and HOMA-IR values after resveratrol supplementation suggest 

improved insulin sensitivity in sedentary 367, obese 307, and diabetic subjects 353,368. It is 

tempting to speculate that reduction of liver fat after resveratrol supplementation may have 

contributed to these beneficial effects 307, as has been shown in rodents 369. Importantly, 

studies that have used the gold standard hyperinsulinemic-euglycemic clamp to assess 

insulin sensitivity have so far not found improved insulin sensitivity after resveratrol 

supplementation in humans 308-310. In contrast to Timmers et al. 307, resveratrol was not 

effective to alter substrate metabolism on any parameter of energy or substrate metabolism 

(body weight and fat mass, insulin sensitivity and substrate oxidation, inflammatory 

markers) in these studies 308-310. Therefore, although rodent studies have consistently 
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demonstrated improvement of skeletal muscle and hepatic insulin sensitivity 356,369,371-373, it 

remains to be investigated whether resveratrol supplementation also increases insulin 

sensitivity in humans 366.  

 

Soy isoflavones 

Plasma metabolic profile 

Soy isoflavones (SI) have been characterized as potential phytoestrogens 374 and have been 

suggested to improve body weight control and substrate metabolism in postmenopausal 

women 375. However, in men and premenopausal women, no isoflavone-induced reduction 

in body mass or fat mass was observed after 6 (165 mg/d) or 12 weeks (130 mg/d) 376,377. 

Nevertheless, SI have been found to prevent LDL-oxidation and other markers of oxidative 

stress in humans 378,379. Moreover, SI supplementation significantly improved plasma lipid 

and lipoprotein profile in men and premenopausal women 376-378. In rodents, an improved 

plasma profile (higher HDL- and lower LDL-cholesterol and FFA 380, TAG 380,381, total 

cholesterol 380-382 and lower insulin 382,383) was associated with increased hepatic lipid 

catabolism 380-383. Furthermore, SI have been found to prevent hepatic lipid accumulation 

through increased peroxisomal and mitochondrial oxidation 381,382,384, and improved hepatic 

insulin sensitivity 382,383. Comparable findings have been reported for skeletal muscle 
382,383,385,386. To date, only one study found that SI supplementation increased insulin 

sensitivity, assessed by means of an oral glucose tolerance-test (OGTT), in postmenopausal 

women 321. 

Adipose tissue metabolism 

It remains to be established whether effects on adipose tissue metabolism may contribute to 

the metabolic effects of SI supplementation. Penza et al. 387 found that nutritional doses (5 

mg/kg/d) of SI for 15 days increased epididymal and renal fat mass and epididymal 

adipocyte volume in male mice, which was accompanied by a slight reduction in insulin 

sensitivity, assessed by an insulin tolerance-test. An increased pancreatic insulin secretion 

by isoflavones 388,389 may compensate and maintain glucose homeostasis during an OGTT 
387. In visceral adipose tissue, genistein supplementation suppressed the high-fat diet-

induced hypertrophy of adipocytes via the upregulation of genes involved in fatty acid β-
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oxidation, as well as through the downregulation of genes associated with adipogenesis or 

lipogenesis 380. The improvement in plasma lipid profile, as well as increased adiponectin 

and decreased TNF-α concentrations, may contribute to the potential improved hepatic and 

peripheral insulin sensitivity after long-term isoflavone supplementation, as discussed 

earlier 103,390,391. 

 

Outline of the thesis 

This thesis focuses on the effects of combined polyphenol supplementation on substrate and 

energy metabolism, with specific emphasis on fatty acid metabolism and insulin sensitivity 

in overweight and obese men and women.  

Dietary polyphenols may affect pathways of lipid catabolism that are impaired in obese, 

insulin resistant subjects. An increased availability of lipids through induction of lipolysis 

as well as stimulation of oxidative pathways may facilitate fat oxidation, thereby reducing 

ectopic fat accumulation and improving insulin sensitivity. Chapter 2 describes a study, 

which was designed to investigate the effects of 3-day epigallocatechin-3-gallate on fasting 

and postprandial fat oxidation (meal: 35 energy% fat) in overweight men and women. Here, 

we combined indirect calorimetry measurements, blood sampling and microdialysis in 

skeletal muscle (m. gastrocnemius) to assess fasting and postprandial whole-body substrate 

metabolism as well as local lipolysis and blood flow. To increase the benefit of polyphenol 

supplementation, we postulated that combining specific polyphenols with common and 

distinct mechanisms of action might achieve additive and synergistic effects on systemic 

lipolysis and fat oxidation. Therefore, in Chapter 3, we describe a study, similarly 

designed as the study in Chapter 2, to examine the effects of combined epigallocatechin-3-

gallate and resveratrol supplementation (E+R), and E+R plus soy isoflavones (E+R+S) on 

fat oxidation before and after a high-fat mixed meal (61 energy% fat) in 18 overweight 

subjects (9 men, 9 women). In Chapter 4, we questioned whether short-term effects of the 

most promising combination of polyphenols examined in Chapter 3 would translate into 

longer-term benefits on tissue-specific insulin sensitivity. Therefore, we performed a 12 

week randomized, placebo-controlled double-blind trial to investigate the effects of long-

term combined E+R supplementation on lipid metabolism, metabolic profile, peripheral, 

hepatic and adipose tissue insulin sensitivity in overweight and obese, non-diabetic 
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subjects. We performed a hyperinsulinemic-euglycemic clamp with a primed [6,6-2H2]-

glucose infusion before and after 12 weeks combined polyphenol or placebo 

supplementation. Additionally, fasting and postprandial lipid metabolism was measured 

during a high-fat mixed meal-test by means of indirect calorimetry, blood sampling and 

microdialysis in adipose tissue and skeletal muscle. In skeletal muscle, we also determined 

gene expression profiles using microarray technology and assessed mitochondrial oxidative 

capacity. Next, the effects of this long-term intervention on adipose tissue morphology and 

gene expression are described in Chapter 5.  

The gut microbiota has been described to differ between lean and obese subjects and to 

correlate with the metabolic phenotype of its host. In Chapter 6, the results of a cross-

sectional study that we performed to assess the relationship between the gut microbiota 

composition, peripheral and hepatic insulin sensitivity in overweight and obese men and 

women are described. Microbiota composition may affect and be affected by dietary 

polyphenols and, therefore, may be involved in the effects of polyphenol supplementation 

on substrate metabolism. In Chapter 7, we describe the effects of combined E+R 

supplementation on gut microbiota composition in overweight and obese men and women. 

We measured fecal abundances of bacterial taxa before and after a 12-week 

supplementation period with either E+R or placebo. Furthermore, we performed regression 

analysis to investigate the impact of alterations in gut microbiota composition on E+R 

supplementation-induced effects on lipid metabolism. Finally, the main findings are 

discussed in a broader perspective and implications for future research are described in 

Chapter 8. 
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Abstract 

Background: Green tea, particularly epigallocatechin-3-gallate (EGCG), may affect body 

weight and composition, possibly by enhancing fat oxidation.  

Objective and Methods: The aim of this double-blind, randomized placebo-controlled 

cross-over study was to investigate whether 3-day supplementation with EGCG (282 

mg/day) stimulates fat oxidation and lipolysis in 24 overweight subjects (age=30±2 yrs, 

BMI=27.7±0.3 kg/m2). Energy expenditure, substrate metabolism and circulating 

metabolites were determined during fasting and postprandial conditions. After 6 h, a fat 

biopsy was collected to examine gene expression. In 12 subjects, skeletal muscle glycerol, 

glucose and lactate concentrations were determined using microdialysis.  

Results: EGCG-supplementation did not alter energy expenditure and substrate oxidation 

compared to placebo. Although EGCG reduced postprandial circulating glycerol 

concentrations (P=0.015), no difference in skeletal muscle lipolysis was observed. Fasting 

(P=0.001) and postprandial (P=0.003) skeletal muscle lactate concentrations were reduced 

after EGCG-supplementation compared to placebo, despite similar tissue blood flow. 

Adipose tissue leptin (P=0.05) and FAT/CD36 expression (P=0.08) were increased after 

EGCG compared to placebo.  

Conclusion: In conclusion, 3-day EGCG-supplementation decreased postprandial plasma 

glycerol concentrations, but had no significant effects on skeletal muscle lipolysis and 

whole-body fat oxidation in overweight individuals. Furthermore, EGCG decreased skeletal 

muscle lactate concentrations, which suggest a shift towards a more oxidative muscle 

phenotype.  
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Introduction 

The prevalence of obesity has become an epidemic problem during the last few decades 1,2. 

Being overweight or obese is considered to be the most important risk factor for the onset 

of type 2 diabetes mellitus 3.  

In recent years there has been an increased interest in the health benefits of polyphenols in 

the prevention of obesity and type 2 diabetes mellitus. Green tea is rich in polyphenols, 

especially catechins. These catechins are comprised primarily of epigallocatechin-3-gallate 

(EGCG), epigallocatechin (EGC), and epicatechin (EC) 4. Many of the beneficial health 

effects of green tea have been attributed to the most abundant catechin EGCG and were 

initially mainly related to their anti-oxidant activity 5-8. More recently, interest has 

increased in the anti-obesity effect of green tea 9. Consumption of green tea extracts (270 

mg EGCG) in combination with caffeine supplementation (150 mg caffeine) has been 

shown to increase fat oxidation 10,11 and energy expenditure 10 in an acute manner in lean 

subjects, and to reduce body weight in overweight subjects 12,13. However, studies are not 

consistent yet, which may be related to different doses of EGCG and caffeine, subjects’ 

BMI and genetic predisposition 11,14-17. Preliminary data suggest that short-term EGCG 

supplementation may stimulate fat oxidation during postprandial conditions in overweight 

subjects 18. Moreover, we recently showed that EGCG, in combination with resveratrol, 

increased fasting and postprandial energy expenditure, associated with an increased 

metabolic flexibility 19, which may be associated with an increased insulin sensitivity 20. 

Although supplementation of a green tea supplement for 24 hours in healthy men increased 

the Matsuda index 21, reflecting a higher insulin sensitivity based on glucose and insulin 

concentrations after an oral glucose tolerance test 22, most studies found no short-term 

effect on glucose homeostasis in humans 16,23,24. 

The underlying mechanisms behind the possible effect of green tea components on energy 

expenditure and lipid metabolism are not well studied in humans. One of the putative 

mechanisms is that EGCG may modulate energy expenditure by inhibiting catechol-o-

methyltransferase (COMT) 10,11, an enzyme involved in the degradation of norepinephrine 
25. As a consequence there is a prolonged stimulation of the adrenergic receptors, thereby 

increasing lipolysis and fat oxidation. Another mechanism may involve activation of 
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sirtuins, especially sirtuin1 (SIRT1) and its transcriptional co-factor PPAR-γ coactivator 1 

alpha (PGC-1α), although few data of human studies are available 26. 

Watanabe et al. 27 have shown that EGCG inhibited acetyl CoA-carboxylase (ACC) in 3T3-

L1 cells, suggesting that EGCG could alter the partitioning of lipids from storage towards 

oxidation. In addition, chronic feeding of green tea extract to mice has been shown to 

elevate skeletal muscle gene expression of factors involved in lipid transport and oxidation, 

such as FAT/CD36, medium-chain acyl-CoA dehydrogenase (MCAD) and uncoupling 

protein 3 (UCP3) 28,29. Moreover, green tea extract reduced malonyl-CoA in skeletal 

muscle, which is an inhibitor of carnitine palmitoyl transferase (CPT), an enzyme involved 

in fatty acid transportation into the mitochondria 30. The latter studies in mice, as well as 

our recent human study showing that combined EGCG and resveratrol supplementation 

affects flexibility of postprandial substrate oxidation without changes in systemic lipolysis 
19 may suggest that skeletal muscle is a major target tissue for the EGCG-induced metabolic 

effects. Nevertheless, whether the effects of EGCG and/or green tea extract in humans are 

mediated through direct effects on muscle metabolism, or secondary to a transient increase 

in free fatty acids (FFA) related to changes in adipose tissue metabolism or a regulatory 

action on gene expression remains to be established.  

Therefore, we aimed to investigate whether a 3-day supplementation of 282 mg/day EGCG 

would increase fasting and postprandial fat oxidation, lipolysis (as indicated by circulating 

FFA and glycerol) and alter adipose tissue gene expression. Furthermore, in a subset of 

subjects (n=12), local skeletal muscle metabolism was also assessed using microdialysis.  

 

Methods 

Ethics Statement 

The study was reviewed and approved by the Medical Ethical Committee of the Maastricht 

University Medical Centre+ and all subjects gave written informed consent before 

participation. All procedures were carried out in accordance with the approved guidelines. 

Subjects 

Twenty-four overweight men (n=9) and women (n=15) with a low habitual caffeine intake 

(< 300 mg/day) were recruited for this study. Sample size was calculated to detect a 
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physiological relevant change in fat oxidation of 20 % with a power of 90 %, assuming a 

significance level of α=0.05 and a drop-out of 20 %, based on pilot data by Boschmann et 

al. 18. Subjects‘ characteristics are presented in Table 2.1. Subjects with type 2 diabetes 

and/or overt cardiovascular complications, and those using medication for digestive 

disorders were excluded from the participation. All subjects tolerated the EGCG capsules 

well and no adverse effects were observed on liver enzymes ALAT and ASAT.  

Table 2.1. Subjects’ characteristics  

  n=24,  9M/15F 
    
Age, years 30 ± 2 
Body-mass-index, kg/m2 27.7 ± 0.3 
Waist circumference, cm 89.0 ± 1.7 
Hip circumference, cm 99.0 ± 1.1 
Waist-hip-ratio 0.90 ± 0.01 
Fat mass, % 28.8 ± 1.9 
Fat free mass, % 71.2 ± 1.9 
Glucose, mmol/L 5.20 ± 0.06 
Insulin, µU/mL 12.5 ± 0.7 
HOMA-IR 2.9 ± 0.2 
Systolic blood pressure, mmHg 114 ± 2 
Diastolic blood pressure, mmHg 75 ± 1 

Values are presented as mean ± SEM. HOMA-IR, Homeostatic assessment model for insulin 
resistance.  

 

Study design  

The effects of EGCG and placebo on postprandial fat oxidation were studied in a double 

blind, randomized cross-over design, with a washout-period of at least 7 days between both 

treatments. Subjects consumed the capsules during 2 days with breakfast and dinner (at 

both occasions 1 capsule of 141 mg). At day 3, subjects came to the university (Maastricht 

University Medical Centre+) for a test (test day). At this day the 2 capsules were ingested 

simultaneously, 1 h before the ingestion of a liquid mixed meal. 

Test product 

The test product EGCG (Teavigo TG Lot: UT05080001) was provided by DSM Nutritional 

Products Ltd to Temmler Werke GmbH (Munchen, Germany). All capsules supplied by 

Temmler Werke GmbH were manufactured, tested and released according to Good 

Manufacturing Practice (GMP) guidelines. Teavigo TG™ contains >90 % EGCG on a dry 
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weight basis. The placebo capsules were filled with partially hydrolyzed cellulose. The 

capsules were of identical appearance containing either 141 mg EGCG or placebo. 300 mg 

EGCG per day has been shown to be safe and well tolerated in single doses as well as 

repeated dosing 31. 

Protocol Test day 

All subjects were asked to refrain from drinking alcohol, smoking and doing strenuous 

exercise for a period of 24 h before the test day. Subjects came to the laboratory by car or 

bus in the morning after an overnight fast. At the beginning of the test day (day 3), a 

cannula was inserted into an antecubital vein for blood sampling. The EGCG or placebo 

capsules were consumed 1 h before metabolic testing and a fasting blood sample was drawn 

to determine baseline values of EGCG (t=-60 min). A liquid test meal was consumed 60 

min after ingestion of EGCG/placebo capsules. Primary outcomes, energy expenditure and 

substrate utilization, were measured before and for 6 h after ingestion of the liquid test 

meal, using a ventilated hood system (Omnical, Maastricht University, The Netherlands) 32. 

Gas analyses, which occurred every minute, are performed by dual paramagnetic O2 

analysers and dual infrared CO2 analysers (type 1156, 1507, 1520; Servomex, 

Cowborough, Sussex, UK), similar to the analysis system described by Schoffelen et al. 33. 

Blood samples were taken before ingestion of the liquid meal (t= 0 min) and for 6 h after 

meal ingestion at t=30, 60, 90, 120, 180, 240, 300 and 360 min after EGCG/placebo 

ingestion to determine circulating metabolites and hormone concentrations. 

The liquid meal had a total energy content equivalent of 40 % of calculated 24 h resting 

energy expenditure based upon the formula of Harris and Benedict 34. The energy content 

of the test meal was accounted for 49 energy% CHO, 35 energy% FAT and 16 eneryg% 

protein and was consumed within 20 minutes. A fat biopsy was taken at the end of the 6 h 

postprandial period in each condition (t = 360 min). Blood samples and fat biopsy were 

snap frozen in liquid nitrogen and stored at -80 °C until analysis. 

Fat biopsy 

A small amount (about 1 g) of abdominal subcutaneous adipose tissue was collected under 

local anesthesia using a needle biopsy technique and snap frozen in liquid nitrogen. Total 

RNA was isolated, using the total RNA stabilization and purification kit for human samples 

Qiagen (Qiagen, Hombrechtikon, Switzerland). Gene expression of hormone-sensitive 
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lipase (HSL), adipose triglyceride lipase (ATGL), CPT-1, ACC-1, FAT/CD36 and leptin 

was measured by the Taqman multiplex method using the ABI 7900 quantitative real-time 

RT-PCR instrument (Applied Biosystems, Rotkreuz, Switzerland) as described by Heim 35. 

All probe and primer sets were designed with the Primer Express program version 1.0 

(Applied Biosystems) and initially tested to have comparable (>90%) efficiency in 

multiplex assays using 18S rRNA as an internal control. An overview of the primers and 

probes is listed in Table 2.2. 

Table 2.2. Overview of primers and probes for RT-PCR of adipose tissue biopsies. 

  Primer Probes 
18S  f: CGGCTACCACATCCAAGGAA 

r: GCTGGAATTACCGCGGCT 
5'-VIC-TGCTGGCACC 
AGACTTGCCCTC-TAMRA-3 

HSL f: CTGCATAAGGGATGCTTCTATGG 
r: CCTGTCTCGTTGCGTTTGTAGT 

5'-FAM- CTGCCTGGGC 
TTCCAGTTCACGC-TAMRA-3 

ATGL f: TAGAGTGGCAGGTTGTCTGAAATG 
r: CCCGTGTACTGTGGGCTCAT 

5'-FAM- CACCATCCACG 
TAGCGCACCCC -TAMRA-3 

CPT-1 f: CCATGTTGTACAGCTTCCAGACA 
r: CACCGACTGTAGATACCTGTTCACA 

5'-FAM- CTGCCTCGCC 
TGCCGGTCC-TAMRA-3 

ACC-1  f: CAGCAGGCTGAACTTCACACA 
r: CTGGAAGGCAGTATCCATTCATT 

5'-FAM- CACGGATCCA 
GAGCACGGCACTC-TAMRA-3 

Leptin CCAAAACCCTCATCAAGACAATT 
r: GAATGAAGTCCAAACCGGTGA 

5'-FAM- CACGCAGTCAGTCTC 
CTCCAAACAGAAA-TAMRA-3 

F, forward; r, reverse; HSL, hormone-sensitive lipase; ATGL, adipose triglyceride lipase; CPT-1, 
carnitine-palmitoyl-transferase-1; ACC-1, acetyl-Coenzyme-A-carboxylase. 
 

Microdialysis 

In a subset of 12 subjects (6 men, 6 women, representative for the whole-study group with 

respect to subjects characteristics), the lipolytic effects of EGCG in skeletal muscle were 

determined by the microdialysis technique. On arrival, two microdialysis probes (CMA 60, 

CMA microdialysis AB, Stockholm, Sweden) were inserted in the medial portion of the m. 

gastrocnemius of both legs after anesthesia (xylocaine 2 % without adrenalin, Astra 

Zeneca). Thereafter, 90 min was allowed for recovery of muscle from insertion trauma.  

One probe was perfused with Ringer’s solution (147 mM sodium, 4 mM potassium, 2.25 

mM calcium and 156 mM chloride, Baxter BV, Utrecht, The Netherlands) at a rate of 0.3 

µl/min to obtain a near 100 % recovery. Microdialysate was collected from these probes in 

30 min fractions during the baseline period and during the early postprandial period (0-120 

min) and at 60 min fractions during the last 4 h postprandially (120-360 min), to determine 

glycerol, glucose and lactate concentrations. Baseline concentrations of glycerol, lactate 
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and glucose were determined by the average of three baseline samples. The second 

microdialysis probe was used for determining tissue blood flow using the ethanol dilution 

technique 36,37. For this, the probes were perfused with Ringer’s solution supplemented with 

50 mM ethanol, at a flow rate of 5 µL/min (Harvard microinfusion pump, Plato BV, 

Diemen, The Netherlands).  

Ethanol concentrations were determined both in the ingoing and outgoing perfusion solvent 

to assess the ethanol inflow/outflow ratio as an indicator for local nutritive blood flow. 

Ethanol concentrations were determined at the same day, whereas microdialysate samples 

for measurement of glycerol, glucose and lactate concentrations were immediately frozen 

and stored at -80 °C until analysis.  

Biochemical analyses 

At all time points, 8 ml blood was collected in pre-chilled tubes with 200 µL of 0.2 M 

EDTA (Sigma, Dorset, UK). After collection, blood samples were centrifuged immediately 

at 4 °C for 10 min at 1000 g and frozen at -80 °C until analysis. Additionally, 500 µL of the 

cell free plasma supernatant was combined with exactly 500 µL stabilization buffer at 

ambient temperature for the determination of EGCG concentration by HPLC. Plasma 

glucose (Uni Kit III, Roche, Basel, Switzerland), lactate, FFA (NEFA-C, Wako Chemicals, 

Neuss, Germany), triacylglycerol (TAG) and free glycerol (148270, Roche Diagnostics, 

Indianapolis, IN, USA) concentrations were analyzed with a COBAS FARA semi-

automatic analyzer (Roche). Insulin was analyzed by radioimmunoassay (Human Insulin 

RIA Kit, LINCO Research Inc, St. Charles, MO).  

Glycerol, glucose and lactate concentrations from the microdialysates were measured by 

bioluminescence, lactate after enzymatic oxidation of L-Lactate 38. Ethanol concentrations 

were measured spectrophotometrically using a standard enzymatic technique (R-Biopharm 

AG, Darmstadt, Germany).  

Calculations 

Substrate oxidation was calculated from VO2 (L/min) and VCO2 (L/min) according to the 

equations of Frayn 39. Nitrogen excretion was calculated based on the assumption that 

protein oxidation represents ~15 % of total energy expenditure. Energy expenditure was 

calculated using the formula of Weir 40. For each time point, the average of 20 min was 

used for calculation. 
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Carbohydrate oxidation (CHO) (g/min) = (4.55*VCO2) – (3.21*VO2) – (2.87*N) 

FAT oxidation (g/min) = (1.67*VO2) – (1.67*VCO2) – (1.92*N) 

N (g/min) = ((0.15* EE)/17)/6.25 

Statistics 

All data are expressed as means ± SEM. The total response of parameters after ingestion 

EGCG or placebo was expressed as the total area under the curve (AUC) and calculated by 

the trapezoid method. Differences between placebo and EGCG were analyzed by means of 

student’s paired t-test. Normal distribution was tested by the Kolmogorov-Smirnov test. If 

parameters were not normally distributed they were ln transformed. Plasma lactate, TAG, 

glycerol and the genes CPT-1, ACC-1, HSL and leptin data were ln transformed. SPSS 15 

for Windows was used to perform all calculation. The level of statistical significance was 

set at P≤0.05. 

 

Results 

Bioavailability 

Plasma EGCG reached maximum concentration (394±73 ng/mL (0.86±0.16 µmol/L)) one 

hour after intake of EGCG (t=0 min) and gradually declined below the detection limit (20 

ng/mL) at the end of the meal-test (t=360 min, Figure 2.1A). Relative bioavailability 

(AUCplasma/dose) was 19±2 %. 

Energy expenditure and substrate oxidation 

Supplementation of EGCG did not change fasting or postprandial fat and carbohydrate 

oxidation (Figure 2.1B-C). Similarly, there were no differences in energy expenditure 

between conditions (Figure 2.1D).  
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Figure 2.1. Time-course of plasma epigallocatechin-3-gallate, substrate oxidation and 

energy expenditure after oral intake of 282 mg/day or placebo 

Results represent mean ± SEM; n=24. Plasma EGCG concentrations (A), carbohydrate oxidation (B), 
fat oxidation (C) and energy expenditure (D) before and after a mixed meal 
 

Circulating metabolites 

EGCG supplementation showed no differences in plasma glucose, insulin and lactate 

concentration compared to placebo (Figure 2.2A-C). Plasma free fatty acids (FFA) 

concentrations tended to be reduced after EGCG supplementation (AUC, P=0.07, Figure 

2.2D). Furthermore, plasma glycerol concentrations were significantly reduced after EGCG 

supplementation as compared with placebo (AUC, P=0.02, Figure 2.2E), which was most 

pronounced in the late postprandial period (240-360 min). Plasma concentration responses 

to the meal, expressed as incremental area under the curve, were not affected by EGCG 

(p=N.S.). EGCG supplementation did not induce differences in plasma TAG 

concentrations, although fasting TAG concentrations tended to be reduced after EGCG 

(P=0.07, Figure 2.2F).  
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Figure 2.2. Time-course of systemic metabolite and hormone concentrations response after 

intake of 282 mg/day EGCG or placebo. 

Results represent mean ± SEM; n=24. Plasma glucose (A), insulin (B), lactate (C), FFA (D), glycerol 
(E) and TAG (F) concentrations before and after a mixed meal. P: paired Student’s t-test for AUC-
values. 
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glucose data not shown). However, interstitial lactate was reduced with EGCG both for 

baseline levels (P<0.001) as well during the postprandial period (P=0.003, Figure 2.3B). 

Moreover, the postprandial increase of interstitial lactate concentrations tended to be 

attenuated by EGCG (iAUC, PLA: 15.2±2.1 mmol/(L*360min), EGCG: 9.8±1.5 

mmol/(L*360 min), P=0.06). 

 

Figure 2.3. Time-course of interstitial metabolite concentrations in skeletal muscle after 

intake of 282 mg/day EGCG or placebo. 

Results represent mean ± SEM; n=12. Skeletal muscle interstitial glycerol (A) and lactate (B) 
concentrations and ethanol Out/In-ratio (C) before and after a mixed meal. P: paired Student’s t-test 
for AUC-values. 
 

Adipose tissue gene and protein expression 

The mRNA expression of CPT-1, ACC-1, ATGL and HSL were similar after 

supplementation with EGCG or placebo capsules. EGCG increased leptin (P=0.05) and 

tended to increase FAT/CD36 (P=0.08) mRNA expression compared to placebo (Table 

2.3).  
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Table 2.3. Normalized mRNA expression in adipose tissue after EGCG or placebo. 

  EGCG Placebo P 
        
CPT-1 1.06·10-5 ± 1.0·10-6 9.30·10-6 ± 7.4·10-7 0.31 
ATGL 3.51·10-4 ± 3.7·10-5 3.70·10-4 ± 3.0·10-5 0.12 
HSL 5.38·10-4 ± 4.7·10-5 5.19·10-4 ± 4.1·10-5 0.73 
FAT/CD36 1.73·10-3 ± 1.2·10-4 1.52·10-3 ± 9.1·10-5 0.08 
ACC-1 2.16·10-4 ± 2.1·10-5 2.18·10-4 ± 2.6·10-5 0.81 
Leptin 5.20·10-4 ± 5.9·10-5 4.30·10-4 ± 5.9·10-5 0.05 

CPT-1, Carnitine-Palmitoyl-transferase-1; ATGL, Adipose triglyceride lipase; HSL, Hormone-
sensitive lipase; FAT/CD36, Fatty acid-translocase/cluster of differentiation; ACC-1, Acetyl-
Coenzyme-A-Carboxylase. P, P-value for statistical difference between EGCG and placebo. 
 

Discussion 

This study was designed to study the acute effects of EGCG supplementation (282 mg/day), 

the main catechin of green tea, on whole-body and skeletal muscle lipolysis and whole-

body fat oxidation in overweight subjects. Supplementation of 282 mg/day EGCG for 3 

days decreased circulating glycerol and tended to reduce FFA concentrations but did not 

alter local muscle lipolysis, substrate oxidation and energy expenditure compared to 

placebo. Skeletal muscle lactate concentrations were significantly reduced by EGCG 

compared to placebo, whilst skeletal muscle glucose concentrations were comparable, 

suggesting an ECCG-induced shift towards a more oxidative skeletal muscle phenotype. 

Bioavailability was in line with previously published data 41. 

It has been suggested that EGCG stimulates fat oxidation by augmenting sympathic 

nervous stimulation 10,42, however human studies have shown conflicting results 19,43. In the 

present study, no significant effect on postprandial fat oxidation and energy expenditure 

was found, which is consistent with findings of Lonac et al. 16 (945 mg EGCG in 48 h) and 

Gregersen et al. 17 (494-684 mg/day catechins and 150 mg caffeine) after 2 days EGCG, 

respectively acute EGCG-enriched catechin supplementation, in healthy adults. In contrast 

to our results, Thielecke et al. 24 observed an increased fat oxidation in the first 2h of the 

postprandial period following 3-day supplementation of EGCG. This may be explained by 

an extra dose of 150 mg EGCG that was ingested 1 h before meal intake, additional to the 

daily dose ingested in the morning. In addition, Dulloo et al. 10 showed an increase in fat 

oxidation and energy expenditure following a single dose of catechins (375 mg catechins, 
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270 mg EGCG) + 150 mg caffeine in healthy young men. Since caffeine has been shown to 

independently stimulate energy expenditure in a dose-dependent manner, with doses as low 

as 100 mg showing effects 44, synergistic effects of EGCG and caffeine could possibly 

explain the discrepancy between the study of Dulloo et al. 10 and our present findings. Of 

note, in the study of Gregersen et al. 17, lower doses of combined EGCG and caffeine (600 

mg, respectively 150 mg, 6 small doses over 11 h) did not induce significant increases in fat 

oxidation and energy expenditure. The synergistic action of different supplements may 

explain the increased energy expenditure that we reported in overweight men and women 

after combined EGCG and resveratrol supplementation 19. 

Although there were no significant effects on postprandial fat oxidation in the present 

study, skeletal muscle lactate concentrations were reduced after EGCG supplementation 

both in the fasted state as well as during the postprandial period. These data might indicate 

a shift towards a less glycolytic and/or more oxidative muscle phenotype after EGCG. It is 

increasingly recognized that skeletal muscle lipolysis may play an important role in the 

regulation of mitochondrial function in skeletal muscle by activation of PPARs 45,46. Since 

we found no significant differences in muscle lipolysis, this has not driven the shift in 

oxidative potential in muscle after EGCG supplementation. Also, we found no differences 

in adipose tissue lipase expression, and even reduced systemic FFA concentrations, 

indicating that the shift towards a more oxidative phenotype in skeletal muscle was not 

related to differences in the supply of exogenous fatty acids, but may possibly be due to a 

direct effect on mitochondrial function which has been reported earlier 26,47. However, the 

reduction of interstitial lactate, indicative for a more oxidative phenotype, does not translate 

into significant alterations in substrate oxidation or glucose disposal. Still, even though the 

acute effects of EGCG on fat oxidation were not significantly different from placebo 

treatment, this does not rule out the possibility that green tea can have beneficial effects on 

fat oxidation 48,49, body composition 12,13,48,50 and insulin sensitivity 51 over longer time 

periods. Therefore, the duration of supplementation, addition of caffeine or other 

polyphenols and combination with exercise are factors that have to be taken into account 

for future studies.  

Systemic glycerol concentrations even significantly reduced in the postprandial period with 

EGCG, but not during fasting conditions. This decrease may indicate a slightly improved 

insulin-mediated suppression of adipose tissue lipolysis after EGCG treatment. Further 
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studies are necessary to examine this mechanism or possible others, including glycerol 

clearance. Additionally, EGCG supplementation resulted in an upregulation of leptin 

mRNA expression in adipose tissue, whilst mRNA expression of the fatty acid transporter 

FAT/CD36 tended to be higher after EGCG supplementation compared to placebo. 

Similarly, we have previously found increased fasting concentrations of the adipose tissue 

derived satiety hormone leptin after short-term supplementation with EGCG and resveratrol 
19. In line, Josic et al. 52 suggested that green tea might increase satiety although the data 

should be confirmed in a large clinical trial with overweight and obese subjects. Altogether, 

these data indicate slight effects on adipose tissue metabolism and function; more 

pronounced effects might require a longer period of supplementation and/or higher dosage 

of EGCG. 

Lastly, the interaction between polyphenols and the gut microbiota may modulate the effect 

of EGCG supplementation 53. Previous research suggests pre- and anti-biotic properties of 

EGCG, which may influence peripheral metabolism through changes in microbiota 

composition and microbial products like short-chain fatty acid 54. Moreover, it should be 

considered that microbial polyphenolic metabolites may have distinct effects on host 

metabolism 55. 

In conclusion, EGCG supplementation for 3 days decreased postprandial plasma glycerol 

concentrations, but had no significant effects on skeletal muscle lipolysis and whole-body 

fat oxidation in overweight individuals. Interestingly, EGCG decreased skeletal muscle 

lactate concentrations, suggesting a shift towards a more oxidative muscle phenotype. It can 

be speculated that the shift towards a more oxidative phenotype may be beneficial over a 

longer period in the prevention of obesity and related  
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Abstract 

Background and Objectives: Impaired regulation of lipid oxidation (metabolic 

inflexibility) is associated with obesity and type 2 diabetes mellitus. Recent evidence has 

indicated that dietary polyphenols may modulate mitochondrial function, substrate 

metabolism and energy expenditure (EE) in humans. The present study investigated the 

effects of short-term supplementation of two combinations of polyphenols on energy 

expenditure (EE) and substrate metabolism in overweight subjects. 

Subjects and Methods: 18 healthy overweight volunteers (9 women, 9 men; age 35±2.5 

yrs; BMI 28.9±0.4 kg/m2) participated in a randomized, double-blind cross-over trial. 

Combinations of epigallocatechin-3-gallate (E, 282 mg/d) + resveratrol (R, 200 mg/d), and 

E+R + 80 mg/d soy isoflavones (S), or placebo capsules (PLA) were supplemented twice 

daily for a period of 3 days. On day 3, circulating metabolite concentrations, EE and 

substrate oxidation (using indirect calorimetry) were measured during fasting and 

postprandial conditions for 6 hours (high-fat-mixed meal (2.6 MJ, 61.2 energy% fat)). 

Results: Short-term supplementation of E+R increased resting EE (E+R vs. PLA: 

5.45±0.24 vs. 5.23±0.25 kJ/min, P=0.039), whereas both E+R (699±18 kJ/120min vs. 

676±20 kJ/120min, P=0.028) and E+R+S (704±18 kJ/120min vs. 676±20 kJ/120min, 

P=0.014) increased 2-4 h-postprandial EE compared with PLA. Metabolic flexibility, 

calculated as the postprandial increase to highest respiratory quotient achieved, tended to be 

improved by E+R compared with PLA and E+R+S only in men (E+R vs. PLA: 0.11±0.02 

vs. 0.06±0.02, P=0.059; E+R+S: 0.03±0.02, P=0.009). E+R+S increased fasting plasma 

free fatty acid (P=0.064) and glycerol (P=0.021) concentrations compared with PLA. 

Conclusions: We demonstrated for the first time that combined E+R supplementation for 3 

days significantly increased fasting and postprandial EE, which was accompanied by 

improved metabolic flexibility in men but not women. Addition of soy isoflavones partially 

reversed these effects possibly due to their higher lipolytic potential. The present findings 

may imply that long-term supplementation of these dosages of epigallocatechin-3-gallate 

combined with resveratrol may improve metabolic health and body weight regulation. 
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Introduction 

Disturbances in lipid metabolism play a key role in the development of obesity, type 2 

diabetes mellitus and cardiovascular disease. A mismatch between energy supply and 

expenditure as well as intrinsic disturbances in the capacity to adapt fuel oxidation to fuel 

availability (defined as metabolic inflexibility) in adipose tissue and skeletal muscle are 

major causes of obesity-related complications 1. 

Impairments in the lipid buffering capacity of adipose tissue may lead to lipid accumulation 

in non-adipose tissues (ectopic fat deposition) in conditions where oxidative capacity is 

insufficient 2. It is well-established that lipid accumulation in the liver and skeletal muscle 

is strongly associated with insulin resistance 3. Indeed, decreased fasting lipid oxidation and 

impaired switching between lipid and carbohydrate fuels in response to insulin, dietary 

stimuli or exercise has been observed in conditions of insulin resistance 1,4,5. Underlying 

mechanisms for metabolic inflexibility may be a reduced mitochondrial function or 

capacity 6, although recent studies indicate that glucose disposal rather than mitochondrial 

dysfunction is a determinant of substrate utilization during insulin stimulation 7.  

Lifestyle interventions, aiming at reducing (saturated) fat intake and increasing physical 

activity have been demonstrated to efficiently counteract disturbances in lipid metabolism, 

and seem to improve metabolic flexibility 8,9. However, lifestyle interventions have been 

shown to be ineffective in about 30 % of the subjects, indicating the need for additional 

preventive strategies. 

Reversal of metabolic impairments by means of dietary supplementation may be a good 

strategy to increase the success of lifestyle interventions. Dietary polyphenols are natural 

components of fruits and vegetables that have recently been shown to alter substrate and 

energy metabolism.  

Resveratrol (R), an activator of silent mating type information regulation 2 homolog 1 

(SIRT1, a member of the NAD+ dependent deacetylases family of sirtuins) and peroxisome 

proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), that is abundantly 

present in grape skin, has been shown to exert significant effects on whole-body energetics, 

mitochondrial function and insulin sensitivity in animal models 10,11. We have recently 

demonstrated for the first time in humans that 30 days R supplementation (150 mg/d) 
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improved metabolic profile, metabolic flexibility and skeletal muscle mitochondrial 

function, and evoked a reduction in energy expenditure (EE) 12. 

In addition to R, it has been shown that the most potent polyphenol from green tea, 

epigallocatechin-3-gallate (E), may increase fat oxidation 13-15 and EE 14,16 in humans, 

although data are certainly not consistent 13-18. Furthermore, human intervention studies 

have demonstrated that moderate dosing of green tea extract, containing 900 mg 

polyphenols + 366 mg E, may improve glucose tolerance 19 and induce a shift in substrate 

oxidation towards a more oxidative phenotype in human skeletal muscle 20. 

Finally, soy isoflavones, in particular genistein, may beneficially affect lipid and glucose 

metabolism by reducing lipid accumulation in the liver 21 and adipose tissue 22. 

Improvements in homeostatic model assessment of insulin resistance (HOMA-IR), fasting 

glucose and area under the curve (AUC) during an oral glucose tolerance test were 

attributed to soy isoflavone supplementation in postmenopausal women 23. In line with 

these findings, insulin-sensitizing effects have been demonstrated in rodents 24. Short-term 

supplementation studies investigating the effects of soy isoflavones on lipid metabolism are 

completely lacking. 

Altogether, there are strong indications that polyphenols may be attractive candidates in the 

prevention of chronic metabolic diseases through modulation of pathways of fatty acid 

metabolism and mitochondrial function. Importantly, however, rather than increasing the 

dosages of single supplements, which appeared to deteriorate possible supplementation 

effects 16,25, it might be more efficient to combine lower dosages of multiple supplements to 

achieve metabolic and beneficial health effects. These potential synergies of polyphenols 

have already been indicated for lipolysis 26 and EE 14,16. 

So far, the additive or possibly synergistic effects of combinations of specific polyphenols 

on fat oxidation and metabolic profile in humans have not been addressed. The aim of the 

present study was to examine the effects of short-term supplementation of a combination of 

specific polyphenols, with partly distinct mechanisms of action, on EE and substrate 

metabolism in overweight humans. 
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Subjects and Methods 

Subjects 

Eighteen healthy, weight-stable overweight (BMI, 25-30 kg/m2) Caucasian subjects (age, 

20-50 yrs) with a normal fasting glucose (<6.1 mmol/l) and normal blood pressure (systolic 

blood pressure, 100-140 mmHg; diastolic blood pressure, 60-90 mmHg) participated in this 

study. Subjects were assigned to order of treatments according to a computer-generated, 

randomization plan (block size, n=6). An independent researcher generated the 

randomization and provided the blinded supplements. Exclusion criteria were (a history of) 

diabetes, coagulation disorders, pulmonary, cardiovascular, hepatic, renal or gastro-

intestinal diseases, liver or thyroid disorders. Furthermore, subjects were excluded when 

using dietary supplements, amongst others vitamins, electrolytes or antioxidants, or having 

a high habitual intake of caffeine (>300 mg/day), green tea (>1 cup/d) or alcohol (>20 g/d). 

Finally, subjects were excluded from participation if they were on a special diet, donated 

blood, took antibiotics, followed intense fitness training, were smokers, pregnant or 

lactating, or were using drugs or medication interfering with the outcomes of the present 

study, over the 3 months prior to the start of the study. All procedures were according to the 

Declaration of Helsinki, all subjects gave written informed consent for the study, which 

was reviewed and approved by the local Medical Ethical Committee of the Maastricht 

University Medical Center+. 

Study design 

In this double-blind randomized placebo-controlled cross-over trial, subjects received two 

combinations of polyphenol supplements and placebo in randomized order: [1] 

epigallocatechin-3-gallate (E: 282 mg/d) + resveratrol (RSV: 200 mg/d); [2] E+R + soy 

isoflavones (S: 80 mg/d) and [3] placebo (PLA), containing partly hydrolyzed 

microcrystalline cellulose. Subjects consumed supplements orally for 2 days (twice daily at 

breakfast and dinner) and during the clinical investigation day (day 3) supplements were 

taken at arrival and simultaneously with the high-fat mixed meal. There was a wash-out 

period of at least 7 days between supplementation periods. 
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Clinical investigation day 

Subjects were asked to maintain their habitual eating and physical activity pattern 

throughout the study. To standardize their eating pattern throughout the supplementation 

days, subjects were asked to keep a 3-day dietary record during the first supplementation 

period. Based on these first period records food intake was standardized during the second 

and third supplementation period. Furthermore, subjects were asked to refrain from 

drinking alcohol and intensive exercise 48 h prior to the study day, and to consume a low-

fat, carbohydrate-rich meal at the evening prior to the study day. After an overnight fast of 

at least 12 h, subjects arrived at the laboratory (Maastricht University Medical Center+) by 

car or bus. After ingestion of half of the daily amount of supplements, a cannula was 

inserted into an antecubital vein for blood sampling. Blood was sampled under fasting 

conditions (t=0 min) and for 6 h after the intake of a liquid high-fat mixed meal (consumed 

within 5 min at t=0 min) at t=30, 60, 90, 120, 180, 240, 300 and 360 min. The liquid high-

fat mixed meal had an energy content of 2.6 MJ (61 energy% fat, 33 energy% 

carbohydrate, 6 energy% protein). Samples were immediately centrifuged (3000 rpm, 4 °C, 

10 min) and plasma aliquots were immediately snap-frozen in liquid nitrogen before 

storage at -80 °C until further analysis. Fasting and postprandial energy expenditure and 

substrate oxidation were measured by indirect calorimetry, using an open-circuit ventilated 

hood system (Omnical, Maastricht University, The Netherlands) 27.  

Supplements 

The test products were commercial available via Pure Encapsulations Inc. (Massachusetts, 

USA) and were encapsulated for blinding by Wellspring Clinical Services (Placebo Lot 

15897, Teavigo Lot 15898, Resveratrol Extra Lot: 15899, Soy Isoflavone 40 Lot: 15900). 

All capsules were manufactured, tested and checked in accordance to standards of EU GMP 

requirements. 

Teavigo capsules contained 94 % E (141 mg/capsule), Resveratrol extra contained 20 % R 

(100 mg trans-resveratrol/capsule, combined with 46 mg grape seed polyphenols and 12,5 

mg red wine polyphenols), and Soy Isoflavone 40 contained 40 % isoflavones (40 mg soy 

isoflavones/capsule (100 mg)). Placebo capsules were filled with microcrystalline cellulose 

and encapsulated equally as the active supplements. Daily supplemented polyphenol 
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amounts (E, 300 mg/d; R, 150 mg/d; S, 150 mg/d) have been shown to be safe and well-

tolerated in humans 12,28,29.  

Blood analyses 

Blood was sampled into pre-chilled EDTA tubes (0.2 M EDTA (Sigma, Dorset, UK)). 

Plasma FFA, triglycerides (TAG) and glucose were measured with enzymatic assays on an 

automated spectrophotometer (ABX Pentra 400 autoanalyzer, Horiba ABX, Montpellier, 

France). Plasma free glycerol was measured with an enzymatic assay (Enzytec™ Glycerol, 

Roche Biopharm, Switzerland) automated on a Cobas Fara spectrophotometric 

autoanalyzer (Roche Diagnostics, Basel, Switzerland). Circulating plasma insulin, 

adiponectin and leptin concentrations were determined using commercially available 

radioimmunoassay (RIA) kits (Human Insulin specific RIA, Human Adiponectin RIA, 

Human Leptin RIA, Millipore Corporation, MA, USA). Catecholamin analysis was 

performed using high performance liquid chromatography with electrochemical detection 

(ClinRep® Complete Kit for Catecholamines in Plasma, RECIPE chemicals & Instruments 

GmbH, Munich, Germany). Plasma concentrations of inflammatory markers (Interleukin-6 

(IL6), Interleukin-8 (IL8) and tumor necrosis factor α (TNFα)) were determined using a 

multiplex enzyme-linked immuno-sorbent assay (ELISA) (Human ProInflammatory II 4-

Plex Ultra-Sensitive Kit, Meso Scale Diagnositics, MD, USA). 

Calculations 

The equations of Weir 30 and Frayn 31 were used to calculate energy expenditure and the 

total rate of fat and carbohydrate oxidation, assuming that protein oxidation accounts for 15 

% of total energy expenditure. Calculations are based on measurements of VO2 

consumption and VCO2 production (l/min), averaged over 20 minutes for each time point.  

Energy Expenditure (EE) (kJ/min) = (3.9*VO2) + (1.1*VCO2)  

Carbohydrate oxidation (CHO) (g/min) = (4.55*VCO2) – (3.21*VO2) – (2.87*N) 

Fat oxidation (FAT) (g/min) = (1.67*VO2) – (1.67*VCO2) – (1.92*N) 

N (g/min) = ((0.15* EE)/17)/6.25 

Macronutrient oxidation as percentages of energy expenditure: 

CHO/EE (%) = (CHO*(17 kJ/g)) / EE  

FAT/EE (%) = (FAT* (39 kJ/g)) / EE 

Metabolic Flexibility = Postprandial RQMax - RQFasting 
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Statistics 

All data are given as means ± standard error of means (SEM). The postprandial response is 

expressed as AUC and incremental AUC (iAUC), which is calculated by the trapezoid 

method. iAUC values are used, when differences in resting values are different. AUC and 

iAUC values are given as total (0-6 h), or divided in periods of 2 hours (0-2 h, 2-4 h, 4-6 h). 

Differences in fasting and postprandial AUC values between treatments were analyzed 

using analysis of variance (ANOVA), with gender as covariate. Only in case of a trend or a 

significance of a treatment (treat) effect or treatment-gender (treat*gender) interaction, 

post-hoc analyses with LSD correction were performed. Trends and significant outcomes of 

ANOVA and post-hoc tests are summarized in Table 3.2. Statistics was done using SPSS 

19.0 for Macintosh. P<0.05 was considered statistically significant.  

 

Results 

Subjects’ characteristics at baseline 

Eighteen healthy, overweight men and women volunteered to participate in this study. 

Subjects’ characteristics are presented in Table 3.1. No major differences in macronutrient 

composition of the diet and energy intake could be identified between subjects (3500 kcal/2 

d (14.8 MJ/2 d), 47.9 energy% CHO, 36.5 energy% FAT, 14.7 energy% PRO).  

Table 3.1. Subjects’ characteristics.  

  Total, n=18 Men, n=9 Women, n=9 
        
Age, years 34.0 ± 2.6 35.0 ± 2.5 33.0 ± 2.8 
Weight, kg 86.6 ± 2.9 91.5 ± 3.3 81.6 ± 1.9 
Length, m * 1.73 ± 0.02 1.76 ± 0.02 1.70 ± 0.02 
Body-mass-index, kg/m2 28.9 ± 0.4 29.5 ± 0.4 28.4 ± 0.4 
Fat mass, % * 27.3 ± 1.9 21.6 ± 1.1 33.0 ± 1.5 
Fat mass, kg * 23.3 ± 1.5 19.7 ± 1.2 26.8 ± 1.2 
Waist-to-hip ratio * 0.83 ± 0.03 0.92 ± 0.01 0.76 ± 0.02 
Systolic blood pressure, mmHg * 121 ± 2 126 ± 1 116 ± 3 
Diastolic blood pressure, mmHg 81 ± 2 84 ± 2 78 ± 1 
Fasting glucose, mmol/l 5.00 ± 0.09 5.07 ± 0.09 4.93 ± 0.09 
Fasting insulin, mU/l * 15.4 ± 1.4 18.6 ± 1.3 12.1 ± 1.1 
HOMA-IR * 3.45 ± 0.33 4.21 ± 0.31 2.69 ± 0.25 

Values are given as means ± SEM. HOMA-IR: homeostatic model assessment of insulin resistance; 
Statistical significant difference between gender indicated as *, when P<0.05. 
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Energy expenditure and substrate oxidation 

Resting EE after an overnight fast was significantly higher during E+R compared to PLA 

supplementation (5.45±0.24 vs. 5.23±0.25 kJ/min, 7843±250 vs. 7528±254 kJ/d (1.30±0.04 

vs. 1.25±0.04 kcal/min, 1873±60 vs. 1798±61 kcal/d, P=0.039) (Figure 3.1A).  

 

Figure 3.1. Substrate oxidation and energy expenditure before and after a high-fat mixed 

meal after 3 day polyphenol supplementation (t=0).  

Values are given as means ± SEM (A-D: n=18, E-F: n=9). A-D: Dashed line, circles: PLA, Solid line, 
solid circles: E+R, solid line, triangle: E+R+S; E-F: white: PLA, grey: E+R, black: E+R+S. Statistical 
significance indicated as *, when post-hoc testing P<0.05. 
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Postprandial EE remained elevated during E+R as well as E+R+S during the mid-

postprandial period compared with PLA (AUC2-4h: PLA, 675±20 kJ/2 h (161±5 kcal/2 h) 

vs. E+R, 699±18 (167±4 kcal/2 h), P=0.03; PLA vs. E+R+S, 703±18 kJ/2h (168±4 kcal/2 

h), P=0.02) (Figure 3.1A). No significant effects were observed for respiratory quotient 

(RQ) (Figure 3.1B), carbohydrate (Figure 3.1C) and fat oxidation (Figure 3.1D) in the 

fasting and postprandial period. In men, metabolic flexibility (calculated as the difference 

between fasting and highest postprandial RQ) was increased during E+R treatment as 

compared to PLA (E+R vs. PLA, P=0.059) and as compared to E+R+S supplementation 

(E+R vs. E+R+S, P=0.009) for men (Figure 3.1E), but not for women (Figure 3.1F). No 

differences were observed for the time point, at which the highest RQ was reached (PLA: 

t=81.7; E+R: t=85.0; E+R+S: t=81.7 min). 

Circulating metabolite concentrations 

Fasting and postprandial plasma glucose (Figure 3.2A) and insulin concentrations (Figure 

3.2B) were not significantly affected by supplementation of combinations of polyphenols. 

Fasting lactate concentrations were not different between treatments, but overall lactate 

response was lower during E+R+S compared with PLA (AUC0-6h: 346.0±17.3 vs. 

374.7±18.8 mmol/(l*6 h), P=0.024) (Figure 3.2C). No significant treatment effects were 

observed for plasma TAG concentrations (Figure 3.2D), whereas fasting FFA 

concentrations tended to be increased by E+R+S compared with PLA (508±51 vs. 401±28 

µmol/l, P=0.06, Figure 3.2E). In line, FFA concentrations were higher in the postprandial 

phase during E+R+S compared with PLA as well as with E+R (AUC0-360: PLA: 146±7, 

E+R: 148±8, E+R+S: 163±10 mmol/(l*6 h), P=0.06; E+R+S vs. E+R, P=0.02). E+R had 

no significant effects on plasma FFA concentrations compared with PLA (Figure 3.2E). 

Finally, fasting glycerol concentrations were elevated by E+R+S compared with PLA 

(E+R+S vs. PLA, P=0.02), with no differences in postprandial conditions (Figure 3.2F).  

Circulating adipokine and norepinephrine concentrations 

Fasting leptin concentrations were elevated after E+R compared with PLA and E+R+S 

supplementation in women, but not in men (women, PLA: 13.6±1.9 (vs. E+R, p<0.01), 

E+R: 15.6±1.4, E+R+S: 13.5±1.7 µg/l (vs. E+R, p<0.01), Figure 3.3A-C). There were no 

significant differences in adiponectin (Figure 3.3D) and norepinephrine (Figure 3.3E) 
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concentrations between treatments. Plasma concentrations of IL-6, IL-8 and TNF-α were 

not changed after polyphenol supplementation compared with PLA (Figures 3.3F-H). 

 

Figure 3.2. Plasma metabolite concentrations after 3 day supplementation before and after 

a high-fat mixed meal (t=0).  

Values are given as means ± SEM (n=18). Dashed line, circles: PLA, Solid line, solid circles: E+R, 
solid line, triangle: E+R+S. Statistical significance for ANOVA indicated as *, when P<0.05; trends 
indicated as #, when P<0.10. 
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Figure 3.3. Plasma adipokine, norepinephrine & cytokine concentrations after 3 day 

supplementation before and after a high-fat mixed meal (t=0).  

Values are given as means ± SEM (n=18). Dashed line, circles: PLA, Solid line, solid circles: E+R, 
solid line, triangle: E+R+S. Statistical significance indicated as *, if P<0.05. 
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Table 3.2. ANOVA outcome of selected variables 

  Period   Ptreat Ptreat*sex group PLA E+R E+R+S P 
                    
EE t=0 kJ/min 0.12 0.59 total 5.23 5.451) 5.27 1)0.04 
 AUC0-2h kJ/2 h 0.51 0.19 total 705 699 712  
 AUC2-4h kJ/2 h 0.01 0.68 total 676 6991a) 7041b) 1a)0.03 
         1b)0.01 
 AUC4-6h kJ/2 h 0.33 0.68 total 664 674 678  
 iAUC0-2h kJ/2 h 0.04 0.29 total 78 461), 2) 79 1)0.04 
         2)0.02 
 iAUC2-4h kJ/2 h 0.23 0.61 total 49 45 71  
 iAUC4-6h kJ/2 h 0.23 0.38 total 37 20 45  
ΔRQ  0.31 0.03 total 0.08 0.1 0.07  
     men 0.06 0.111), 2) 0.03 1)0.06 
         2)0.01 
Lactate         
 t=0 mmol/l 0.95 0.41 total 0.9 0.9 0.9  
 AUC0-6h mmol/(l*6 h) 0.04 0.31 total 382 367 3371) 1)0.02 
 iAUC0-6h mmol/(l*6 h) 0.11 0.94 total 58 50 22  
FFA         
 t=0 µmol/l 0.04 0.98 total 401 402 5081), 2) 1)0.06 
         2)0.06 
 AUC0-6h mmol/(l*6 h) 0.08 0.56 total 146 148 1631), 2) 1)0.09 
         2)0.04 
 AUC0-2h mmol/(l*2 h) 0.01 0.35 total 35 37 441), 2) 1)0.02 
         2)0.01 
 AUC2-4h mmol/(l*2 h) 0.40 0.54 total 41 40 45  
 AUC4-6h mmol/(l*2 h) 0.38 0.91 total 70 71 74  
 iAUC0-6h mmol/(l*6 h) 0.32 0.95 total 0.9 2.2 -20.2  
Glycerol         
 t=0 µmol/l 0.06 0.65 total 85.7 93.2 103.31) 1)0.02 
 AUC0-6h mmol/(l*6 h) 0.71 0.48 total 31.7 32.5 32.8  
 iAUC0-6h mmol/(l*6 h) 0.45 0.60 total 0.05 -1.59 -1.1  
TAG         
 t=0 mmol/l 0.40 0.11 total 1.4 1.3 1.3  
 AUC0-6h mmol/(l*6 h) 0.19 0.49 total 714 690 640  
 iAUC0-6h mmol/(l*6 h) 0.11 0.13 total 206 212 173  
Leptin t=0 ng/l 0.03 0.04 total 13.6 15.61), 2) 13.5 1)0.04 
         2)0.02 
 t=0 ng/l   women 19.1 22.81), 2) 18.7 1)0.01 
                  2)0.01 

AUC: Area under the curve; iAUC: incremental AUC; t: treatment, t*s: treatment*sex; EE: energy 
expenditure; ΔRQ: metabolic flexibility; FFA: free fatty acids; E+R: epigallocatechin-3-gallate + 
resveratrol; E+R+S: E+R + soy isoflavones; PLA: placebo; 1): statistically significant different from 
PLA; 2: statistically significant difference between polyphenol treatments. 
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Discussion 

We hypothesized that a combination of polyphenols may act additively or synergistically to 

enhance EE and fat oxidation. Indeed, the present study demonstrated for the first time that 

short-term supplementation (3 days) of E+R increased fasting and postprandial EE in 

humans. This was accompanied by a more pronounced increase in postprandial RQ, 

metabolic flexibility, in men but not in women. Addition of soy isoflavones partially 

reversed the beneficial effects of E+R, except for the increase in postprandial EE. 

No effects on resting EE have been previously found during human supplementation 

studies with either E or R alone in the short-term 13,15,18 or long-term 12,25,32-34. Potent EE-

stimulating effects of E in combination with caffeine have been reported during 12 h- and 

24 h-measurements 14,16, but this effect could not be confirmed in all studies 17. 

Nevertheless, in the former two studies, E was only effective in combination with caffeine 

and not specified to either fasting or postprandial conditions 14,16. Indeed, 3 day 

supplementation with E alone did not increase resting EE in overweight volunteers 13,20, 

indicating that R or a synergistic effect of both components may be responsible for the 

effect on resting EE, which was found in the present study. 

The potential of R to increase EE has been reported in non-human primates after 

supplementation for 15 weeks 11. Also, studies in obese rodents observed that 6 and 10 

weeks R supplementation prevented the development of obesity upon an obesogenic diet 
35,36. However, in the latter studies EE or other measures of energy balance such as food 

intake and energy excretion were not measured. In contrast, we have recently demonstrated 

that 30 d supplementation with R alone decreased EE in healthy overweight men, 

mimicking the effects of caloric restriction 12.  

There are several possible mechanisms that may explain the increased EE as a result of 

short-term E+R supplementation. Rodent studies indicate that E may exert its metabolic 

effects through an inhibition of the noradrenaline-degrading enzyme catechol-O-methyl-

transferase (COMT), leading to an increased norepinephrine concentration 37,38. In the 

present study norepinephrine concentrations were not affected by E+R supplementation, 

indicating that this cannot explain the observed increase in EE. We cannot exclude the 

possibility that R has counteracted E-induced catecholamine signaling, since R may inhibit 
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catecholamine secretion and signaling in rat cardiomyocytes and adrenal medullary cells 
39,40. 

The present results indicate that E+R supplementation increased fasting leptin 

concentrations. This might have contributed to the increase in EE, since leptin infusion has 

been shown to stimulate EE in humans 41. In line with our findings, it has been shown that 

3-days E supplementation increased leptin expression in adipose tissue in overweight men 
20. Since for E supplementation alone no increase in circulating leptin concentrations have 

been reported in previous short-term studies, it is tempting to postulate that E and R act 

synergistically to enhance leptin concentration. Interestingly, leptin concentrations 

remained unchanged after addition of soy isoflavone to E+R supplementation, suggesting 

that S may impair leptin secretion. Indeed, Szkudelska et al. 42 found that genistein 

attenuated leptin secretion by rodent adipocytes. 

Finally, mitochondrial uncoupling in skeletal muscle, liver and (brown) adipose tissue 

might contribute to the observed increase in EE following E+R 43. Indeed, studies in 

rodents reported that E or R alone stimulate expression of uncoupling proteins in tissues 

relevant to EE 11,44. In rodent skeletal muscle, R stimulates PGC-1α, an upstream target of 

uncoupling genes 11. Thus, it would be highly interesting to examine the effects of 

combined polyphenol supplementation on mitochondrial function in future studies. In 

summary, it remains to be determined whether R or the synergistic effect of R+E is 

responsible for the observed increase in resting EE in humans. 

Metabolic flexibility, reflected by the postprandial increase in RQ, was improved by the 

combination of E+R compared with placebo in men but not women. A recent study 

performed in our laboratory provided evidence that E supplementation induced a slightly 

more oxidative phenotype in skeletal muscle of obese men 20, which may improve 

metabolic flexibility. Additionally, we recently demonstrated that 30 days of R 

supplementation improved muscle mitochondrial respiration and induced a more oxidative 

phenotype of skeletal muscle in obese men, which was accompanied by improved 

metabolic flexibility 12. In line, improved mitochondrial function after R or E treatment was 

found in rodents 10,11,38. Thus, further research has to indicate whether R, E and/or additive 

or synergistic effects between both components explain the short-term improvement in 

metabolic flexibility in men.  
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Interestingly, long-term supplementation of high doses of R (500 mg/d, 3-fold higher than 

in the study of Timmers et al. 12) had no significant metabolic effects in young mildly 

insulin resistant obese subjects 25 and that R (75 mg/d) has no metabolic effects in non-

obese women 34, suggesting that R is mainly beneficial in metabolically compromised states 
45 and/or at lower dosages. Therefore, we cannot exclude the possibility that the fact that we 

only observed an improved metabolic flexibility in men, may be due to the more 

pronounced insulin resistance in men compared with women at baseline (HOMA, men: 

4.21±0.44, women: 2.69±0.35). Secondly, we cannot exclude that the unaffected metabolic 

flexibility in women compared with men might be biased by the use of oral contraceptives 

and/or the phase of the menstrual cycle 46, which were not taken into account in the present 

study. 

Because metabolic flexibility and mitochondrial function are closely associated with insulin 

sensitivity 1, it is tempting to postulate that prolonged combined E+R supplementation may 

improve insulin sensitivity. This is strengthened by long-term studies in rodents, 

demonstrating insulin-sensitizing properties of both E and R 47,48. Further studies have to 

address the long-term benefits in both the prevention as well as reversal of obesity-related 

health complications. 

When adding soy isoflavones to the combination of E+R the effects on resting EE and 

metabolic flexibility was completely reversed. It can be speculated that isoflavones’ 

lipolytic potential, reflected by increased fasting and postprandial FFA concentrations in 

the present study, may reverse these benefits 49. More specifically, synergistic 

amplifications of lipolysis after combination of polyphenols (resveratrol+genistein) have 

previously been reported 26. Increased postprandial FFA concentrations may in turn reduce 

metabolic flexibility in healthy humans 50. 

In conclusion, the present study demonstrated for the first time that short-term (3 days) 

supplementation of low-to-moderate dosages of E+R increased fasting and postprandial EE, 

which was accompanied by improved metabolic flexibility in men but not women. Soy 

isoflavones partially reversed the beneficial effects of E+R, except for increased 

postprandial EE, possibly due to their higher lipolytic potential.  

Our data indicate that the impact of polyphenol supplementation is highly dependent on the 

type or combination of polyphenols and on gender. Furthermore, for resveratrol 

supplementation it is postulated 51,52 that supplementation rather prevents and reverses 
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metabolic abnormalities in metabolically high-risk subjects than affecting pathways and 

phenotypes of originally healthy subjects, which we suggest to account for in future studies. 

Independent of gender and metabolic profile appears to be the increased energy 

expenditure. Assuming the increase achieved in this study by supplementing E+R maintains 

during long-term supplementation without counter regulatory effects, this may result in a 

1.4 kg-weight loss over a period of 6 months. According to findings in the US Diabetes 

Prevention Program, every kilogram of weight loss reduces the risk for developing diabetes 

by 16 % 53. Importantly, long-term follow-up studies should further investigate whether 

these short-term metabolic effects of combined polyphenol supplementation in fact 

translate into long-term metabolic benefits. This would yield highly important information 

to further optimize polyphenol supplementation, thereby improving metabolic health and 

preventing metabolic disease in humans. 
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Abstract 

Background and Objective: The obese, insulin resistant state is characterized by 

impairments in lipid metabolism. We have previously shown that 3-day supplementation of 

combined epigallocatechin-3-gallate and resveratrol (E+R) increased energy expenditure, 

and improved the capacity to switch from fat towards carbohydrate oxidation upon a high-

fat mixed meal (HFMM)-test in men. The present study aimed to investigate the longer-

term effect of E+R supplementation on metabolic profile, mitochondrial capacity, fat 

oxidation, lipolysis and tissue-specific insulin sensitivity. 

Design: In this randomized, double-blind study, 38 overweight and obese subjects (18 

male, 38±2 yrs, body-mass-index 29.7±0.5 kg/m2) received either E+R (282 and 80 mg/d, 

respectively) or placebo for 12 weeks. Before and after intervention, oxidative capacity and 

gene expression were assessed in skeletal muscle. Fasting and postprandial (HFMM) lipid 

metabolism were assessed using indirect calorimetry, blood sampling and microdialysis. 

Tissue-specific insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp 

with [6,6-2H2]-glucose infusion. 

Results: E+R supplementation did not affect fasting plasma metabolic profile. Although 

whole-body fat mass was not affected, visceral adipose tissue mass tended to decrease after 

the intervention compared with placebo (Ptime*treatment=0.09). E+R supplementation 

significantly increased oxidative capacity in permeabilized muscle fibers (Ptime*treatment<0.05, 

PE+R<0.05). Moreover, E+R affected fasting (Ptime*treatment=0.03) and postprandial respiratory 

quotient (Ptime*treatment=0.01) by preserving fat oxidation, which declined after placebo 

(PPLA=0.05 and PPLA=0.03, respectively). Energy expenditure was not altered 

(Ptime*treatment=0.96). Furthermore, E+R supplementation attenuated the increase in plasma 

triacylglycerol concentration during the HFMM-test that was observed after placebo 

(Ptime*treatment=0.04, PPLA=0.01). Finally, insulin-stimulated glucose disposal and suppression 

of endogenous glucose production and lipolysis were not affected by E+R. 

Conclusions: 12 weeks E+R supplementation increased mitochondrial capacity and 

stimulated fat oxidation as compared to placebo, but this did not translate into increased 

tissue-specific insulin sensitivity in overweight and obese subjects. Further research is 

required to investigate whether these effects may contribute to reduce cardiometabolic risk. 
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Introduction 

The prevalence of obesity and related chronic diseases is continuously increasing 1. Insulin 

resistance is a major risk factor for the progression of obesity towards chronic metabolic 

diseases, including cardiovascular disease and type 2 diabetes mellitus (T2DM) 2. A 

reduced lipid storage capacity and impaired endocrine function of adipose tissue 3, and a 

decreased mitochondrial capacity and accumulation of lipid-intermediates in skeletal 

muscle 2,4,5 are closely associated with insulin resistance. 

Current treatment strategies to control the progression of chronic diseases are mainly 

focused on lifestyle, pharmacological or surgical interventions. However, these 

interventions show large inter-individual variability in response 6, which underscores the 

need for additional strategies to optimize the prevention of obesity-associated metabolic 

disorders. Polyphenols have been identified as dietary ingredients with antioxidant 

properties decades ago. More recently, they have also been implicated in the prevention of 

T2DM and cardiovascular diseases. As such, epigallocatechin-3-gallate (E), most abundant 

in green tea, and resveratrol (R), which is present in grape skin, red wine and peanuts, have 

been implicated in the prevention of body weight gain and insulin resistance in rodents on 

obesogenic diets 7-9. In animal models of obesity, E has been shown to reduce the 

absorption of intestinal lipids and to increase lipid catabolism, possibly by inhibiting 

catechol-O-methyltransferase 10 or activating AMP kinase (AMPK) 11. R has been 

suggested to stimulate mitochondrial biogenesis by activating sirtuin 1 (SIRT1) and PPARγ 

coactivator 1-α (PGC1α) 7,8. Human studies have demonstrated that supplementation with 

both E (or E-rich products) and R improved markers of insulin sensitivity (HOMA-IR, E 12 

R 13), reduced plasma markers of oxidative stress (total antioxidative status) and systemic 

inflammation (TNF-α, E 12, R 13), stimulated postprandial fat oxidation (E 14) and reduced 

body weight (E 15, R 16). However, conflicting data in humans have also been reported 17-19.  

We have recently postulated that a combination of polyphenols with distinct mechanisms of 

action may have additional and/or synergistic effects, which may result in physiologically 

relevant effects on fat oxidation. Indeed, we have shown that supplementation of a specific 

combination of E and R (E+R) for 3 days significantly increased resting and postprandial 

energy expenditure (EE), and resulted in a more pronounced increase in respiratory 
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quotient (RQ) after a high-fat mixed meal (HFMM) compared to placebo (PLA) in men 20. 

Importantly, these effects were not observed after single E supplementation 21.  

Here, we investigated the effects of longer-term combined E+R supplementation on 

metabolic profile, skeletal muscle oxidative capacity, fat oxidation, lipolysis and peripheral, 

hepatic and adipose tissue insulin sensitivity in overweight and obese subjects.  

 

Subjects and methods 

Subjects 

42 untrained (<3 h organized sports activities per week), weight-stable (<2 kg body weight 

change 3 months prior to inclusion) overweight and obese (BMI>25 kg/m2), Caucasian men 

(n=21) and women (n=21) between 20 and 50 years with normal glucose tolerance (fasting 

glucose <6.1 mmol/L, 2 h-glucose <7.8 mmol/L), normal blood pressure (diastolic, 60-90; 

systolic, 100-140 mmHg) were included in this study. Subjects were not allowed to donate 

blood or use any medication or supplements that might interfere with study outcomes for 3 

months before entering the study. Exclusion criteria were pregnancy, menopause, lactation 

and any reported (history of) chronic inflammatory, cardiovascular, hepatic, pulmonary, 

renal or gastro-intestinal disease. Intake of caffeine (<600 mg/d), green tea (<3 cups/d), 

alcohol (<20 g/d), grapes and peanuts (occasional consumption) had to be limited.  

Study design and randomization 

In this randomized, double-blind placebo-controlled, parallel intervention trial, subjects 

received either a combination of E and R supplements (E+R; 282 mg/d and 80 mg/d, 

respectively) or PLA (partly hydrolyzed microcrystalline cellulose-filled capsules) for a 

period of 12 weeks to assess effects of E+R supplementation on tissue-specific insulin 

sensitivity (primary outcome) and metabolic profile, skeletal muscle oxidative capacity, fat 

oxidation and lipolysis (secondary outcomes). An independent researcher executed a block-

wise randomization and packed the supplements according to a computer-generated 

randomization plan (Microsoft Excel, Mac). The supplementation period started at the day 

after the last baseline measurement in week 0 and was continued throughout measurements 

in week 12. Subjects were instructed to maintain their habitual lifestyle pattern throughout 

the study. In total, subjects were asked to visit the university 10 times: medical screening, 
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three clinical investigation days (CIDs) before start of supplementation (within seven days), 

three control visits during the supplementation period and three CIDs in the last week of 

supplementation (within seven days). CIDs comprised skeletal muscle biopsies combined 

with dual energy Xray absorptiometry-scan (CID1), HFMM-test (CID2), and 

hyperinsulinemic-euglycemic clamp (CID3) and were separated by at least one day. 

Control visits for compliance, side effects and to provide new capsules were scheduled in 

week 2, 4, 8 of intervention. In week 0 and 12, subjects were asked to fill in 3-day food 

records (2 weekdays, 1 weekend day) and in week 4 a 1-day food record (1 weekday) in 

order to monitor and control for changes in dietary habits. An experienced dietitian checked 

the food records and discussed these with the subjects in case of incomplete or missing 

information. Energy and nutrient intake were analyzed using the Dutch Food Composition 

Dataset (NEVO, National Institute for Public Health and the Environment, Ministry of 

Health, Welfare and Sport, The Netherlands).  

Clinical investigation days 

Two days prior to the CIDs, subjects were asked to refrain from intense physical activity 

and alcohol consumption. Meal intake the evening before each CIDs was standardized per 

subject by providing the same meal. The first meal was provided ad libitum (740±34 kcal, 

48±2 energy% fat) and subjects were asked to keep the portion size constant at all 

subsequent CIDs. After an overnight fast, subjects came to the university by car or public 

transport. Both before and after intervention, a two-step hyperinsulinemic-euglycemic 

clamp and a HFMM-test were performed, and a skeletal muscle biopsy was collected. All 

procedures were executed in a resting, half-supine position.  

Dual energy Xray absorptiometry and skeletal muscle biopsy (CID1) 

First, body composition was measured by dual energy Xray absorptiometry-scanning using 

the 3-compartment model (Hologic BCA, VitaK, Maastricht, Netherlands). Next, skeletal 

muscle (m. vastus lateralis) biopsies were taken under local anesthesia during fasting 

conditions before and after the 12 weeks intervention period. One portion (~30 mg) was 

freshly used for high-resolution respirometry 22, which allows determination of oxidative 

capacity ex vivo by quantifying the oxygen consumption using the Oxygraph-2k 

(OROBOROS Instruments, Innsbruck, Austria). The other portion was directly frozen in 

isopentane and stored at -80 °C until further analyses. Protein quantification of 
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mitochondrial oxidative phosphorylation (OxPhos) complexes was performed by SDS-

PAGE followed by western blot analysis using nitrocellulose membranes (Trans-blot® 

Turbo™ transfer system, Bio-Rad). Blots were probed with Total OxPhos Antibody 

Cocktail (Mitoscience/Abcam, Cambridge, UK) and a secondary IRDye680/700 conjugated 

Donkey anti-Mouse antibody (Licor/Invitrogen, Bleiswijk, NL). Antigen-antibody 

complexes were visualized using an Odyssey Infrared Imaging System (LICOR 

Biosciences, Wateringen, the Netherlands). 

A detailed description for skeletal muscle microarray analysis and lipid composition has 

been enclosed in the Supplemental Material. Briefly, for microarray analysis, 100 ng of 

intact total RNA was extracted from skeletal muscle biopsies using the Trizol method 

(Qiagen, Venlo, Netherlands) and processed applying the GeneChip® WT PLUS Reagent 

Kit and Human Transcriptome Array (HTA) 2.0 GeneChips® (Affymetrix, Santa Clara, 

CA, USA) according to the manufacture’s manual. Functional data analysis was based upon 

false discovery rate q-value <0.2 on the filtered data set (interquartile range > 0.2 (log2), 

intensity >20, >5 arrays, >5 probes per gen). For determination of lipid composition, total 

lipids were extracted after lyophilisation of skeletal muscle tissue. Diacylglycerol (DAG) 

and triacylglycerol (TAG) were separated by thin-layer chromatography and fatty acid 

profiles were determined on an analytical gas chromatograph, as described previously 5. 

Microdialysis (CID2) 

Four microdialysis probes (CMA 60; CMA Microdialysis, Stockholm, Sweden) were 

inserted under local anesthesia, two in the medial portion of the gastrocnemius muscle of 

both legs and two in the subcutaneous adipose tissue 6–8 cm left and right from the 

umbilicus in male subjects (n=17; age: 40.1±2.0 yrs; BMI: 30.0±0.8 kg/m2; HOMA-IR: 

2.1±0.4) as described previously 23. After insertion, 90 min were allowed for tissue 

recovery from insertion trauma. Throughout the HFMM-test (CID2), in each tissue, one 

probe was perfused at 0.3 µL/min with Ringer solution to collect microdialysate for 

analyses of glycerol, glucose, pyruvate and lactate concentrations by means of CMA 

enzymatic assay kits on a CMA 600 microdialysis analyzer (CMA Microdialysis, 

Stockholm, Sweden). The contralateral probe was perfused at 5.0 µL/min with Ringer 

solution, supplemented with 50 mmol/L ethanol, to assess ethanol outflow/inflow ratio as 

an indicator of local blood flow. Ethanol concentrations were measured 



Dietary polyphenols and insulin sensitivity 

103 

spectrophotometrically at 340 nm using a standard ethanol assay kit (Boehringer, 

Mannheim, Germany).  

High-fat mixed meal-test (CID2) 

After inserting a cannula into the antecubital vein, substrate oxidation was measured for 30 

min under fasting conditions (t=0) and for 4 h after the ingestion of a liquid HFMM (625 

kcal, 61 energy% fat, 33 energy% carbohydrate, 6 energy% protein), which was consumed 

within 5 min at t=0. Blood samples were taken under fasting (t=0 min) and postprandial 

conditions (t=30, 60, 90, 120, 150, 180, 210 and 240 min). Energy expenditure and 

substrate oxidation were measured by indirect calorimetry, using the open-circuit ventilated 

hood system (Omnical, Maastricht University, Maastricht, Netherlands) and were 

calculated according to the formulas of Weir 24 and Frayn 25, respectively.  

Hyperinsulinemic-euglycemic clamp (CID3) 

A two-step hyperinsulinemic–euglycemic clamp with [6,6-2H2]-glucose infusion (tracer, 

Cambridge Isotope Laboratories, Andover, MA, USA) was performed to assess the rate of 

disappearance (Rd), non-oxidative glucose disposal (NOGD) and endogenous glucose 

production (EGP) 22. First, a cannula was inserted into the antecubital vein. A second 

cannula was inserted into a superficial dorsal hand vein for the sampling of arterialized 

blood (using a hot-box with air circulating at ~50 °C). After the administration of a bolus-

injection of 2.4 mg/kg [6,6-2H2]-glucose, a continuous [6,6-2H2]-glucose infusion was 

started at 0.04 mg/(kg*min) and continued throughout the measurement. After 2 h, insulin 

infusion was started at 10 mU/(m2*min) for 2 h, followed by 40 mU/(m2*min) insulin for 

the last 2 h to suppress lipolysis and EGP. By a variable co-infusion of a 20 %-glucose 

solution, enriched to 1.92 mg/mL tracer, blood glucose concentrations were maintained at 

5.0 mmol/L. During the last 30 min of each insulin-infusion step (0, 10 and 40 

mU/(m2*min)) blood samples were collected and substrate oxidation was measured using 

indirect calorimetry (described under ‘High-fat mixed meal-test, CID2’) to assess glucose 

kinetics. Kinetics of Rd and NOGD were calculated during 0 and 40 mU/(m2*min) insulin-

infusion, respectively as absolute increase between these steps (Δ µmol/(kg*min)), whereas 

calculations for insulin-mediated suppression of EGP and free fatty acids (FFA) were 

performed during 0 and 10 mU/(m2*min) insulin-infusion, respectively as relative 

suppression during 10 compared to 0 mU/(m2*min) (%). 
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Biochemistry 

Blood was collected into pre-chilled tubes, centrifuged at 1000 g, and plasma was snap-

frozen in liquid nitrogen and stored at -80 °C until analyses.  

To check for treatment compliance, plasma epigallocatechin-3-gallate and resveratrol 

concentrations were determined, as described before 13,26. Briefly, for measurement of the E 

concentration, plasma (500 µL) was first combined with 500 µL of a stabilizing E-buffer 

(containing EDTA, ascorbic acid and sodium acetate) and after addition of an internal 

standard, samples were analyzed by liquid chromatography–mass spectrometry 26. 

Determination of total R and total dihydro-R was performed also after internal standard 

addition on a liquid chromatography–mass spectrometry system 13.  

Isotopic enrichment of plasma glucose was determined by electron ionization gas 

chromatography–mass spectrometry and expressed as tracer-to-tracee ratio for steady-state 

calculations of Rd, NOGD and EGP, as performed previously 22. 

Plasma glucose, lactate, FFA, TAG, total cholesterol and HDL-cholesterol (HDL-c) 

concentrations were determined with an automated spectrophotometer (ABX Pentra 400 

autoanalyzer, Horiba ABX, Montpellier, France), using enzymatic colorimetric kits. LDL-

cholesterol (LDL-c) concentration was calculated by the Friedewald-equation 27. Plasma 

glycerol concentrations were measured with an enzymatic assay (Enzytec Glycerol, Roche 

Biopharm, Basel, Switzerland) automated on a Cobas Fara spectrophotometric autoanalyzer 

(Roche Diagnostics, Basel, Switzerland). Circulating plasma concentrations of insulin, 

adiponectin and leptin were analyzed using commercially available radioimmunoassay kits 

(Human Insulin specific radioimmunoassay, Human Adiponectin radioimmunoassay, 

Human Leptin radioimmunoassay, Millipore Corporation, Billerica, MA, USA). Plasma 

concentrations of inflammatory markers (IL-6, IL-8 and TNF-α) were determined using a 

multiplex ELISA (Human ProInflammatory II 4-Plex Ultra-Sensitive Kit, Meso Scale 

Diagnositics, Rockville, MD, USA).  

Supplements 

The supplements were commercially available and kindly provided by Pure Encapsulations 

Inc. (Sudbury, MA, USA). All capsules were manufactured, tested and checked in 

accordance to standards of EU GMP requirements. 
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E capsules contained 94 % epigallocatechin-3-gallate (141 mg per capsule, Lot 3570112) 

and R capsules 20 % trans-resveratrol (40 mg trans-resveratrol in Polygonum cuspidatum 

extract per capsule, Lot 1611011). Two lots of placebo capsules (microcrystalline cellulose, 

Lot 7150712, Lot 7160712) were used for blinding. PLA capsules were encapsulated 

identically to the active supplements and filled with microcrystalline cellulose and 

tan/brown, respectively, pink/red powder to blind both supplements. Capsules were packed 

into white opaque boxes, labeled per subject without indication of the content. One capsule 

of each supplement (E and R or both blinded PLA capsules) was ingested during breakfast 

and dinner. This regimen was maintained until the last measurement. After completion of 

the study, returned capsules were counted for compliance and stability of polyphenols was 

assessed by measuring E and R via high-performance liquid chromatography in capsules 

stored for 3 months, according to the manufacture’s recommendations. The supplements 

were considered safe and well-tolerated 20. 

Study approval 

All subjects gave written informed consent for participation in this study, which was 

reviewed and approved by the local medical ethical committee of Maastricht University 

Medical Center+. All procedures were conducted according to the Declaration of Helsinki.  

Statistics 

Sample size (n=42) was calculated to detect a physiological relevant change in insulin 

sensitivity of 20 % with a power of 80 %, assuming a significance level of α=0.05 (n=34) 

and a drop-out of 20 % (n=8). All data are expressed as mean ± SEM. Data of the HFMM-

test are expressed as AUC to define the total measurement period during this test (fasting 

and postprandial), and as incremental AUC, defining specifically the postprandial response 

(diet-induced effect as compared to fasting), both calculated by the trapezoid method. 

Variables were tested for normality using Shapiro-Wilk-test and showed a normal 

distribution. Differences in subjects’ characteristics at baseline were tested by Student’s 

unpaired t-test. Data were analyzed using a two-way repeated measures ANOVA, with time 

(pre, post) and treatment (PLA, E+R) as factors. A P<0.05 was considered as statistically 

significant and a P<0.10 as a trend. In case of a significant time*treatment interaction 

(Ptime*treatment), post-hoc analyses with Bonferroni correction were applied to identify 

significant within-group effects (PE+R, PPLA). In case of significant baseline differences 



Chapter 4 

106 

between treatment groups (for state 3 respiration and protein expression of OxPhos 

complexes III and V), the baseline value was included as covariate in an univariate 

ANOVA with the change over time as dependent variable and treatment as between-subject 

factor. In the ANOVA model no interactions between gender and primary and secondary 

outcomes were observed. Statistics was done using SPSS 19.0 (IBM Corporation, Armonk, 

NY, USA) for Macintosh.  

 

Results 

Subjects’ characteristics and plasma biochemistry 

42 overweight and obese men and women volunteered to participate in this study (August 

2012 - December 2013). In total, 4 subjects (3 men, 1 women) did not complete the study 

due to traveling abroad (n=1), re-employment (n=1) or non-compliance with respect to 

supplementation or changing lifestyle (n=2). Characteristics of the 38 subjects (18 men, 20 

women) who completed the study are summarized in Table 4.1.  

Table 4.1. Subjects' characteristics 

  PLA, n=20 E+R, n=18 P 
Age, years 38.7 ± 2.2 36.1 ± 2.2 0.43 
Body-mass-index, kg/m2 29.5 ± 0.7 29.9 ± 0.6 0.67 
Waist-hip-ratio 0.87 ± 0.02 0.87 ± 0.02 0.78 
Systolic blood pressure, mmHg 114 ± 2 117 ± 2 0.27 
Diastolic blood pressure, mmHg 76 ± 2 76 ± 2 0.86 
Fasting plasma glucose, mmol/L 5.10 ± 0.08 5.19 ± 0.09 0.44 
2 h plasma glucose, mmol/L 5.38 ± 0.21 5.34 ± 0.24 0.92 
HbA1c, % 5.15 ± 0.06 5.12 ± 0.06 0.76 
Hemoglobin, mmol/L 8.9 ± 0.1 8.6 ± 0.2 0.22 
Hematocrit, L/L 0.43 ± 0.01 0.39 ± 0.02 0.18 
Creatinine, µmol/L 79.5 ± 3.7 74.2 ± 2.7 0.29 
Alanine-aminotransferase, U/L 27.9 ± 4.4 26.9 ± 2.2 0.86 

Values are given as means ± SEM. Data were analyzed using a Student's unpaired t-test. A P<0.05 
was considered statistically significant for the difference between PLA and E+R group. 2 h plasma 
glucose, plasma glucose concentration 2 h after oral glucose ingestion (75 g in 200 mL water).  
 

There were no significant differences between the E+R (n=18, 8 men) and PLA (n=20, 10 

men) group with respect to baseline characteristics. Compliance was confirmed by counting 

returned supplements (<3 % of supplements were returned). Supplements were well 
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tolerated and no adverse events were reported. Importantly, plasma concentrations of E, R 

and dihydro-R were significantly increased in all subjects who had received E+R (Table 

4.2), indicating compliance to the supplementation regimen. No significant changes in 

fasting plasma concentrations of glucose, insulin, lactate, glycerol, FFA and TAG were 

observed (Table 4.2 and/or Figures 4.1A-F). Likewise, fasting plasma concentrations of 

leptin, adiponectin, and the inflammatory markers IL-6, IL-8 and TNF-α were not 

significantly affected by the intervention (Table 4.2). Furthermore, fasting plasma 

concentrations of total cholesterol, HDL-c and LDL-c were not significantly changed after 

12 weeks E+R-supplementation versus PLA. However, the ratio of total cholesterol/HDL-c, 

a marker for myocardial infarction risk 28, tended to decrease after E+R supplementation 

but not after PLA (Ptime*treatment=0.03, PE+R=0.09, PPLA=0.13, Table 4.2). 

Table 4.2. Fasting plasma biochemistry before and after intervention 

  PLA, n=20 E+R, n=18   
  Week 0 Week 12 Week 0 Week 12 P 
E, ng/mL <2.5 <2.5 <2.5 15 ± 6   
R, ng/mL <10 <10 <10 274 ± 51   
Dihydro-R, ng/mL <10 <10 <10 192 ± 28   
Glucose, mmol/L 5.0 ± 0.1 5.1 ± 0.1 5.1 ± 0.1 5.1 ± 0.1 0.69 
Insulin, mU/L 10.1 ± 1.5   10.0 ± 1.0  8.1 ± 1.0 7.4 ± 0.6 0.67 
HOMA-IR 2.3 ± 0.4 2.2 ± 0.2 1.8 ± 0.2 1.7 ± 0.1 0.74 
FFA, µmol/L 553 ± 33   533 ± 43   523 ± 24   555 ± 35   0.37 
TAG, mmol/L 1.29 ± 0.16 1.52 ± 0.16 1.61 ± 0.23 1.61 ± 0.24 0.17 
Cholesterol, mmol/L 5.9 ± 0.3 5.8 ± 0.3 6.0 ± 0.2 5.8 ± 0.2 0.49 
HDL-c, mmol/L 1.23 ± 0.07 1.20 ± 0.07 1.27 ± 0.08 1.29 ± 0.09 0.14 
LDL-c, mmol/L 4.40 ± 0.27 4.30 ± 0.27 4.45 ± 0.22 4.20 ± 0.16 0.39 
Cholesterol/HDL-c 5.09 ± 0.34 5.27 ± 0.43 5.16 ± 0.42   4.94 ± 0.42  0.03 
Adiponectin, µg/mL 9.01 ± 0.85 9.64 ± 1.05 8.74 ± 0.82 8.99 ± 0.87 0.52 
Leptin, ng/mL 23.4 ± 4.2   22.7 ± 4.1   19.8 ± 2.4   18.2 ± 2.4   0.65 
IL-6, pg/mL 0.96 ± 0.17 0.83 ± 0.11 0.77 ± 0.07 0.85 ± 0.13 0.25 
IL-8, pg/mL 9.25 ± 0.61 9.82 ± 0.86 9.80 ± 0.93 9.19 ± 0.70 0.26 
TNF-α, pg/mL 2.84 ± 0.21 3.15 ± 0.42 2.69 ± 0.18 2.63 ± 0.15 0.20 

Values are given as means ± SEM and data were analyzed using a two-way repeated measures 
ANOVA, with time (pre, post) and treatment (PLA, E+R) as factors. A P<0.05 was considered as 
statistically significant. No baseline differences were observed (Student’s t-test). In case of a 
significant time*treatment interaction (P<0.05), post-hoc analyses with Bonferroni correction were 
applied to identify significant within-group effects. E, free plasma epigallocatechin-3-gallate; FFA, 
free fatty acids; HDL-c, HDL-cholesterol; HOMA-IR, homeostatic model assessment of insulin 
resistance; LDL-c, LDL-cholesterol; R, total plasma resveratrol; TAG, plasma triacylglycerol. 
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Figure 4.1. Fasting and postprandial insulin and metabolite concentrations before and 

after intervention 

Values are given as means ± SEM (n=38). Fasting plasma insulin (A) and metabolite (B-F) 
concentrations, AUCs during the HFMM-test and the incremental AUCs were analyzed using a two-
way repeated measures ANOVA, with time (Ptime, pre, post) and treatment (Ptreatment, PLA, E+R) as 
factors. A P<0.05 was considered as statistically significant. No time*treatment interactions were 
observed on fasting concentrations and incremental AUCs. Reported P-values refer to the respective 
AUCs. In case of a significant time*treatment interaction (Ptime*treatment), post-hoc analyses with 
Bonferroni correction were applied to identify significant within-group effects. Dashed line, open 
circles: PLA pre; solid line, filled circles: PLA post; Dashed line, open squares: E+R pre; solid line, 
filled squares: E+R post.  
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E+R did not alter food intake and body composition 

Food intake, assessed using self-reported 3-day food records, was not changed after 

supplementation in either group (E+R: 2092±200 kcal/d, 45±1 energy% carbohydrate, 39±1 

energy% fat, 15±1 energy% protein, PLA: 1982 kcal/d, 45±2, 38±2, 16±1 energy%). Body 

weight, body fat percentage and body fat distribution (upper and lower body fat mass) were 

not significantly altered by E+R supplementation (Table 4.3). Interestingly, however there 

was a tendency towards a differential effect on visceral adipose tissue mass, with a 

tendency towards a decrease after E+R as compared to PLA (Ptime*treatment=0.09).  

Table 4.3. Body composition before and after intervention 

  PLA, n=20 E+R, n=18   
  Week 0 Week 12 Week 0 Week 12 P 
Body weight, kg 88.3 ± 2.8   88.6 ± 2.9   92.4 ± 3.6  92.0 ± 3.8   0.41 
Body fat, kg 26.7 ± 1.9   26.5 ± 1.9   29.4 ± 1.4  29.1 ± 1.6   0.85 
Body fat, % 30.1 ± 1.9   29.9 ± 1.8   31.9 ± 1.4  31.5 ± 1.4   0.84 
Lean mass, kg 59.5 ± 2.5   59.6 ± 2.5   61.2 ± 3.0  61.1 ± 3.2   0.73 
Upper body fat, kg 13.1 ± 1.0   12.9 ± 1.0   14.0 ± 0.7  13.8 ± 0.7   0.93 
Lower body fat, kg 9.4 ± 0.9 9.4 ± 0.9 11.0 ± 0.8  10.8 ± 0.9   0.51 
Visceral fat, kg 0.48 ± 0.04 0.50 ± 0.05 0.44 ± 0.05 0.41 ± 0.04 0.09 

Values are given as means ± SEM and data were analyzed using a two-way repeated measures 
ANOVA, with time (pre, post) and treatment (PLA, E+R) as factors. A P<0.05 was considered as 
statistically significant. No baseline differences were observed (Student’s t-test). In case of a 
significant time*treatment interaction, post-hoc analyses with Bonferroni correction were applied to 
identify significant within-group effects. 
 

E+R increased skeletal muscle oxidative capacity 

Next, we investigated whether skeletal muscle oxidative capacity was increased after 12 

weeks E+R supplementation, since we have previously shown that R supplementation for 

30 days improved mitochondrial capacity 13. Therefore, ex vivo mitochondrial respiration 

using different substrate combinations was determined in human, isolated, permeabilized 

skeletal muscle fibers 22.  

ADP-stimulated complex I-linked respiration upon addition of malate + glutamate was not 

affected by E+R supplementation (data not shown). Also, respiration on a fatty acid 

substrate, assessed by input of malate + octanoyl-carnitine, was not significantly affected 

by E+R (Ptime*treatment=0.19, Figure 4.2A). Interestingly, however, we found that 

mitochondrial respiration upon electron input of both complexes I and II (state 3, complex I 
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& II), assessed by addition of succinate after malate + glutamate or after malate + octanoyl-

carnitine + glutamate, was increased in the E+R group versus PLA after 12 weeks 

supplementation (state 3 respiration (MGS): Ptime*treatment=0.01, PE+R=0.01, PPLA=0.26; state 

3 respiration (MOGS): Ptime*treatment=0.05, PE+R<0.01, PPLA=0.45, Figure 4.2B-C). 

Furthermore, maximal mitochondrial respiration, as determined by titration of the chemical 

uncoupler Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone (FCCP), was increased 

after E+R compared with PLA (Ptime*treatment=0.01; PE+R=0.01, PPLA=0.31, Figure 4.2D). 

Mitochondrial proton leak, which was assessed by the addition of the ATP synthase 

inhibitor oligomycin, was not significantly affected by the intervention (state 4o, 

Ptime*treatment=0.10, Figure 4.2E). Despite randomization, there was a significant difference in 

state 3 mitochondrial respiration before intervention between treatment groups (Ppre=0.01), 

which was negatively related to the change over time (r=-0.57, P<0.01).  

E+R increased oxidative metabolism pathways at the transcriptional and translational 

level 

To identify pathways that may underlie the E+R-induced improvement of mitochondrial 

capacity, we next determined whether protein expression of OxPhos complexes in skeletal 

muscle was altered by E+R. We found an E+R-induced increase in complexes III 

(Ptime*treatment=0.03, PE+R=0.06, PPLA=0.35) and V (Ptime*treatment<0.01, PE+R<0.01, PPLA=0.29) 

compared to PLA (Figure 4.2G-H). Based on these findings, we performed microarray 

analysis on skeletal muscle biopsies (m. vastus lateralis), collected before and after 12 

weeks E+R or PLA treatment. Indeed, gene set enrichment analysis indicated that the most 

upregulated pathways after E+R supplementation were related to the citric acid cycle and 

respiratory electron transport chain, while pathways related to carbohydrate metabolism 

were upregulated in the PLA group (Figure 4.3). Taken together, these data indicate that the 

increased mitochondrial capacity following E+R is accompanied by changes at the 

transcriptional and translational level. 
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Figure 4.2. Skeletal muscle oxidative capacity and OxPhos protein content before and after 

intervention 

Values are given as means ± SEM (n=29). Oxidative capacity (A-E) was assessed by means of ex vivo 
respirometry on skeletal muscle (m. vastus lateralis), isolated after an overnight fast. In aliquots, 
protein contents of OxPhos complexes were analyzed by western blots (F-H). Basal respiration 
(PLApre: 6.95±0.96, PLApost: 3.93±1.03, E+Rpre: 3.67±1.17, E+Rpost: 4.87±1.04 pmol O2/mg muscle/s) 
was increased by about 10-fold by addition of ADP (state 3 respiration). Variables were analyzed 
using a two-way repeated measures ANOVA, with time (Ptime, pre, post) and treatment (Ptreatment, 
PLA, E+R) as factors. A P<0.05 was considered as statistically significant. Significant baseline 
differences were identified by Student’s unpaired t-test (Ppre) and in case of a significant 
time*treatment interaction (Ptime*treatment), post-hoc analyses with Bonferroni correction were applied 
to identify significant within-group effects.  
White bars: pre; black bars: post; AU: arbitrary units; FCCP: Carbonyl Cyanide p-
Trifluoromethoxyphenylhydrazone; G: glutamate; M: malate; O: octanoyl-carnitine; S: succinate.  
 

E+R preserves fat oxidation without changes in energy expenditure 

Next, we investigated whether the improved skeletal muscle oxidative capacity after 12 

weeks of E+R supplementation may translate into whole-body effects on fasting substrate 

oxidation. Indeed, E+R supplementation significantly affected fasting substrate oxidation, 

as reflected by a non-significant decrease in fasting RQ after E+R and a significant increase 

in the PLA group (E+Rpre: 0.803±0.009, E+Rpost: 0.785±0.016, PLApre: 0.784±0.009, 

PLApost: 0.821±0.015, Ptime*treatment=0.03, PE+R=0.31, PPLA=0.04, Figure 4.4A), without 

effects on EE (Figure 4.4B). More specific, a concomitant significant increase in fasting 

carbohydrate oxidation was observed after PLA, but not after E+R (Ptime*treatment=0.05, 

PE+R=0.44, PPLA=0.04). Vice versa, E+R supplementation preserved fasting fat oxidation, 

whilst there was a significant decrease in the PLA group (Ptime*treatment=0.06, PE+R=0.46, 

PPLA=0.05, Figures 4.4C and D). 
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Figure 4.3. Skeletal muscle 

gene set enrichment analyses 

before and after intervention 

Heatmap of pathways related to 
metabolic function from gene set 
enrichment analyses on skeletal 
muscle (m. vastus lateralis) 
(n=27). Signal log-ratio’s are 
presented per subject and as mean 
per group. Genes in the heatmap 
represent significantly contributing 
genes to most affected pathways 
by E+R or PLA supplementation 
(false discovery rate, q-value 
<0.2). Color in the heat-maps 
reflects the signal log-ratio’s per 
subject and group (Ø) with red 
being down-and green upregulated 
comparing post versus pre-
measurement. 
A: WP2766, the citric acid TCA 
cycle and respiratory electron 
transport; 
B: BIOC, PGC1A pathway; 
C: fatty acid triacylglycerol and 
ketone body metabolism; 
D: WP534, glycolysis and 
gluconeogenesis;  
E: WP1848, metabolism of 
carbohydrates;  
F: WP1935, transport of glucose 
and other sugars, bile salts, organic 
acids, metal ions and amine 
compounds; 
G: translocation of GLUT4 to the 
plasma membrane;  
H: unfolded protein response 
UPR. 

PLA E+R PLA 
Ø  

E+R 
Ø  
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Figure 4.4. Fasting and postprandial whole-body substrate oxidation and energy 

expenditure before and after intervention 

Values are given as means ± SEM (n=31). Indirect calorimetry was performed during fasting 
conditions and for 4 h after intake of a liquid HFMM. Mean O2-consumption and CO2-production 
over 20 min were used for calculations. Fasting substrate oxidation (A, C-D) and energy expenditure 
(B), AUCs during the HFMM-test (E-H) and the incremental AUCs (I-L) were analyzed using a two-
way repeated measures ANOVA, with time (Ptime, pre, post) and treatment (Ptreatment, PLA, E+R) as 
factors. A P<0.05 was considered as statistically significant. In case of a significant time*treatment 
interaction (Ptime*treatment), post-hoc analyses with Bonferroni correction were applied to identify 
significant within-group effects. Figures A-D and I-L: White bars: pre; black bars: post; Figures E-H: 
Dashed line, open circles: PLA pre; solid line, filled circles: PLA post; Dashed line, open squares: 
E+R pre; solid line, filled squares: E+R post.  
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E+R affects triacylglycerol concentrations but did not change postprandial responses 

of substrate oxidation and local lipolysis  

To examine E+R-induced effects on postprandial substrate utilization and energy 

expenditure, we performed a HFMM-test (625 kcal, 61 energy% fat). More specific, we 

determined whole-body, adipose tissue and skeletal muscle substrate metabolism in the 

postprandial state combining plasma blood sampling, indirect calorimetry and 

microdialysis.  

The preserved fat oxidation with E+R as compared to in the fasting state was maintained 

throughout the postprandial period (AUC fat oxidation, Ptime*treatment=0.03, PE+R=0.38, 

PPLA=0.03, Figure 4.4E-H). The postprandial responses (incremental AUC) of RQ, EE, 

carbohydrate and fat oxidation as well as the postprandial responses of plasma metabolites 

and insulin were not significantly affected by the intervention (Figure 4.4I-L and Figure 

4.1A-F, respectively).  

Importantly, however, E+R supplementation significantly attenuated the increase in plasma 

TAG concentrations during the HFMM-test, that was observed in the PLA group (E+Rpre: 

AUC=527±59, E+Rpost: AUC=530±66, PLApre: AUC=440±56, PLApost: AUC=531±62 

mmol/(L*4 h), Ptime*treatment=0.04, PE+R=0.92, PPLA<0.01, Figure 4.1F).  

Skeletal muscle and abdominal subcutaneous adipose tissue substrate metabolism and 

blood flow were investigated in men using microdialysis. Adipose tissue and skeletal 

muscle ethanol outflow/inflow ratios, which indicate local blood flow, were not 

significantly affected by the intervention (Supplemental Figure 4.S1). Interstitial glycerol 

concentrations, reflecting local lipolysis, were also not affected by E+R (Supplemental 

Figure 4.S2). Furthermore, no effects of E+R were observed on interstitial glucose, 

pyruvate and lactate concentrations.  

E+R did not affect intramuscular lipid content and composition  

A preserved fat oxidation may contribute to reduced intramyocellular lipid metabolites and 

consequently insulin sensitivity 2. E+R supplementation for 12 weeks did not alter total 

lipid content (TAG and DAG) or saturation of the TAG and DAG fraction (Supplemental 

Table 4.4.). 
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Table 4.4. Skeletal muscle lipid fractions and proteins before and after intervention 

  PLA, n=17 E+R, n=12   
  Week 0 Week 12 Week 0 Week 12 P 
DAG 

    
 

Total, µmol/g 13.6 ± 1.6 11.7 ± 1.9   20.4 ± 6.9  14.9 ± 2.8  0.52 
SFA, % 35.4 ± 2.0 36.9 ± 2.6  37.4 ± 2.6  37.0 ± 2.4  0.59 
MUFA, % 52.8 ± 1.7 51.0 ± 2.4  49.8 ± 3.4  49.7 ± 3.5  0.70 
PUFA, % 11.8 ± 0.5 12.1 ± 0.8  12.8 ± 1.2  13.3 ± 1.3  0.92 
TAG 

    
 

Total, µmol/g 308 ± 103 285 ± 98  392 ± 137 154 ± 31  0.27 
SFA, % 38.9 ± 2.1 40.1 ± 2.2  43.9 ± 3.9  42.9 ± 3.8  0.62 
MUFA, % 51.1 ± 1.6 50.0 ± 1.8  44.7 ± 4.4  46.8 ± 4.0  0.55 
PUFA, % 10.1 ± 0.6 9.9 ± 0.6 11.4 ± 1.3  10.4 ± 1.3  0.52 

Values are given as means ± SEM and data were analyzed using a two-way repeated measures 
ANOVA, with time (pre, post) and treatment (PLA, E+R) as factors. A P<0.05 was considered as 
statistically significant. DAG, diacylglycerol; MUFA, mono-unsaturated fatty acids; PUFA, poly-
unsaturated fatty acids; SFA, saturated fatty acids; TAG, triacylglycerol. 
 

E+R did not affect tissue-specific insulin sensitivity 

Finally, we investigated whether the improved mitochondrial capacity and whole-body fat 

oxidation resulted in improved insulin sensitivity following E+R supplementation. We 

found no changes in peripheral, hepatic or adipose tissue insulin sensitivity after E+R 

compared to PLA supplementation (Table 4.5), which is in agreement with unchanged 

fasting and postprandial plasma glucose and insulin concentrations. More specific, the Rd 

and EGP under fasting and insulin-stimulated conditions were not significantly affected 

following 12 weeks of E+R supplementation (Table 4.5). Similar results were found when 

values were expressed as changes relative to fasting conditions (Table 4.5). Interestingly, 

E+R increased fasting NOGD (Ptime*treatment=0.10, PE+R=0.01, PPLA=0.91). Furthermore, E+R 

did not improve insulin-mediated suppression of plasma FFA, indicating that adipose tissue 

insulin sensitivity was also not affected by E+R supplementation (Ptime*treatment=0.62, Table 

4.5).  
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Table 4.5. Whole-body substrate kinetics before and after intervention 

  PLA, n=19 E+R, n=17   
  Week 0 Week 12 Week 0 Week 12 P 
Rd, µmol/(kg*min) 

    
fasting 10.6 ± 0.3 10.7 ± 0.3 10.4 ± 0.2 10.9 ± 0.3 0.19 
clamp 31.2 ± 2.3 32.5 ± 2.3 34.2 ± 2.8 35.8 ± 3.3 0.89 
stimulation, Δ 20.6 ± 2.2 21.5 ± 2.3 24.3 ± 3.0 25.0 ± 3.2 0.84 
NOGD, µmol/(kg*min) 

    fasting   6.1 ± 0.7   6.2 ± 0.6   5.7 ± 0.6     7.9 ± 0.7* 0.10 
clamp 20.5 ± 2.4 23.4 ± 1.9 23.0 ± 2.5 25.3 ± 3.1 0.95 
stimulation, Δ 14.4 ± 2.1 17.2 ± 2.1 17.5 ± 2.7 17.4 ± 2.6 0.44 
EGP, µmol/(kg*min) 

    fasting 10.4 ± 0.3  10.4 ± 0.3  10.1 ± 0.2  10.7 ± 0.3  0.19 
clamp  4.0 ± 0.6  4.2 ± 0.6  4.6 ± 0.5  4.6 ± 0.5 0.98 
suppression, % 60.9 ± 4.9  58.6 ± 4.9  54.1 ± 5.1  56.3 ± 4.7  0.74 
Plasma free fatty acids, µmol/L 

    fasting 545 ± 40 547 ± 44 537 ± 42 543 ± 47 0.94 
clamp 196 ± 25 210 ± 22 189 ± 26 203 ± 23 0.94 
suppression, % 57.7 ± 6.6  57.1 ± 5.2  63.4 ± 7.0  59.0 ± 5.5  0.63 
Substrate oxidation 

    RQ, Δ 0.09 ± 0.01 0.08 ± 0.02 0.10 ± 0.01 0.11 ± 0.01 0.31 
CHO, Δ g/min 0.10 ± 0.01 0.09 ± 0.02 0.11 ± 0.01 0.12 ± 0.02 0.54 
Fat, % 55.5 ± 7.6  54.3 ± 9.1  46.7 ± 6.9  48.4 ± 8.3  0.81 
Values are given as means ± SEM and data were analyzed using a two-way repeated measures 
ANOVA, with time (Ptime, pre, post) and treatment (Ptreatment, PLA, E+R) as factors. A P<0.05 was 
considered as statistically significant. No baseline differences were observed (Student’s t-test). In case 
of a significant time*treatment interaction, post-hoc analyses with Bonferroni correction were applied 
to identify significant within-group effects, which are indicated by asterisk (*). CHO, carbohydrate 
oxidation; EGP, endogenous glucose production; NOGD, non-oxidative glucose disposal; Rd, rate of 
disappearance; RQ, respiratory quotient.  
 

Discussion 

Combining polyphenols with distinct mechanisms of action may lead to additional and/or 

synergistic beneficial metabolic effects compared to single-polyphenol supplementation 
20,21. Here, we show that after 12 weeks, combined E+R supplementation has preserved 

fasting and postprandial fat oxidation as compared to the PLA group. This coincided with 

an increased skeletal muscle oxidative capacity in the E+R group. In addition, E+R 

attenuated the increase in TAG concentrations compared to PLA, and the reduction in 

visceral adipose tissue mass tended to be higher with E+R as compared to PLA. These 
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beneficial metabolic effects, however, did not translate into improved peripheral, hepatic 

and adipose tissue insulin sensitivity in overweight men and women. 

We have previously shown that 3 days of E+R supplementation increased energy 

expenditure 20. The present study demonstrated that this increase is not maintained 

following 12 weeks supplementation. Furthermore, consistent with unchanged food intake, 

we found that body weight and body composition were not affected by longer-term E+R 

supplementation. These findings are in line with most 13,14,17,18,29,30 but not all 15 previous 

studies in humans. Although no significant effects on total fat mass were apparent, we 

found that E+R tended to decrease visceral adipose tissue mass by approximately 11 % as 

compared to PLA. Likewise, E and R have reduced visceral adipose tissue in animals 31,32. 

As visceral adipose tissue is known to be detrimental with respect to metabolic health 33, its 

reduction may be of physiological importance in the long-term. 

Interestingly, we demonstrated that combined E+R supplementation significantly affected 

fasting substrate oxidation as compared to PLA (Figure 4.4). E+R supplementation 

preserved fat oxidation, whereas it significantly declined in the PLA group. This effect was 

maintained during postprandial conditions. In agreement with our findings, previous studies 

in rodents have shown that polyphenols may stimulate fat oxidation under fasting 

conditions 9,31,34. The compensatory increase in carbohydrate oxidation that we found in the 

PLA group was not accompanied by alterations in whole-body glucose disposal. Rather, we 

found that E+R may diminish glycolysis and increase glycogen storage 35, as indicated by 

the increased fasting NOGD (~40 %, PE+R=0.01). Importantly, the differentially affected fat 

oxidation in the present study is neither driven by an increased lipid supply towards skeletal 

muscle nor by a significant reduction in muscle lipid stores (TAG and DAG content). 

Indeed, it has previously been shown that a shift in fasting fat oxidation can occur 

independently of changes in intramuscular lipid content, energy expenditure, adiposity or 

insulin sensitivity 36,37. Alternatively, a higher oxidative capacity of skeletal muscle 

mitochondria was found predictive for a lower fasting respiratory exchange ratio or, in 

other words, a greater relative reliance on lipids instead of carbohydrate as a fuel source 

during fasting conditions 37-39. Interestingly, we indeed found that 12 weeks E+R 

supplementation increased skeletal muscle oxidative capacity in permeabilized muscle 

fibers. This was accompanied by an increased muscle protein content of OxPhos complexes 

and an upregulation of mitochondrial pathways (citric acid cycle and respiratory electron 
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transport chain, Figures 4.2 and 4.3). In line, others and we have previously shown that R 

increased mitochondrial capacity by activating the AMPK-SIRT-PGC1α-pathway 7,8,13. 

Additionally, since the R supplement is composed of Polygonum cuspidatum extract, we 

cannot exclude minor metabolic effects of other components (piceid and emodin 40). It has 

been suggested that E increases β-adrenergic stimulation by norepinephrine due to 

catechol-O-methyltransferase inhibition 10,41. However, in our previous study we did not 

observe altered norepinephrine concentrations after E+R supplementation 20. Finally, 

reduced oxidative stress, indicated by a reduced unfolded protein response pathway 42, 

might have contributed to the observed improvement of skeletal muscle oxidative capacity 
43-45 or vice versa 46.  

An increased mitochondrial capacity might reflect an improved metabolic risk profile, since 

increased mitochondrial capacity has been associated with higher insulin sensitivity in 

several cross-sectional studies in men 37-39,47. Therefore, we hypothesized that the 

improvements in lipid metabolism may lead to increased insulin sensitivity following 12 

weeks of E+R supplementation. However, we did not find a significant change in 

peripheral, hepatic or adipose tissue insulin sensitivity. To date, only three human clinical 

trials with R, but not a single study with E, have examined the effects of polyphenol 

supplementation on peripheral and hepatic insulin sensitivity using the gold standard 

hyperinsulinemic-euglycemic clamp. In accordance with our findings, these studies did not 

observe significant changes in peripheral 17,18,29 and hepatic 18 insulin sensitivity in lean 18, 

obese 17 and patients with non-alcoholic fatty-liver disease 29 after supplementation with R 

for 4, 8 or 12 weeks, respectively. Importantly, in these studies, mitochondrial capacity was 

not assessed 29 or not improved 17,18, based on gene expression and protein abundance of 

related enzymes. Therefore, the present study is the first to demonstrate that combined E+R 

supplementation has beneficial effects on skeletal muscle oxidative capacity, although this 

was not accompanied by increased peripheral, hepatic or adipose tissue insulin sensitivity 

in overweight and obese men and women.  

In line, the insulin-mediated stimulation of carbohydrate oxidation and suppression of lipid 

oxidation was not affected by E+R supplementation after meal ingestion or during the 

hyperinsulinemic-euglycemic clamp. Previously, we have shown that single 

supplementation of R for 4 weeks and combined E+R supplementation for 3 days improved 

metabolic flexibility in humans 13,20, as shown by a more pronounced suppression of 
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postprandial fat oxidation. The apparent discrepancy between the present and earlier studies 

may be explained by the duration of supplementation. E+R supplementation had no effect 

on postprandial glucose, insulin and FFA concentrations or local interstitial glucose and 

glycerol concentrations. This is in agreement with other placebo-controlled trials in 

Caucasians 13,19, whereas gender-specific analyses may reveal metabolic effects 14.  

Strikingly, we found that E+R supplementation for 12 weeks attenuated the increase in 

plasma TAG during the HFMM-test that was seen in the PLA group. Previous studies in 

humans 13,14 and rodents have also shown reduced plasma TAG after E or R 

supplementation 9,31,48. This might, at least partly, be explained by a reduced intestinal lipid 

uptake, an improved buffering capacity of dietary TAGs in adipose tissue or increased 

peripheral (e.g. muscle and liver) TAG extraction. In accordance, a reduced intestinal lipid 

uptake after E supplementation in rodents has been suggested 9, although this could not be 

confirmed in humans 30. Additionally, E and R supplementation may have affected hepatic 

lipid clearance, storage and oxidation, as indicated by several animal studies 48-50. 

In conclusion, the present study demonstrated that 12 weeks of E+R supplementation 

improved skeletal muscle oxidative capacity, preserved fasting and postprandial fat 

oxidation and prevented an increase in TAG concentrations compared to PLA. These 

putative beneficial metabolic effects did not translate into improved peripheral, hepatic or 

adipose tissue insulin sensitivity after 12 weeks. Importantly, the improved mitochondrial 

capacity and fat oxidation may increase physical condition 51 and prevent the progression of 

obesity 52 and insulin resistance 4 in the long term.  
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Supplemental Methods 

Dual energy Xray absorptiometry 

Dual energy Xray absorptiometry measurements have been evaluated against computed 

tomography 1. 

Microarray analysis 

For microarray analysis, total RNA was extracted from skeletal muscle biopsies using the 

Trizol method (Qiagen, Venlo, Netherlands). 100 ng of intact total RNA was processed 

applying the GeneChip® WT PLUS Reagent Kit (Affymetrix, Santa Clara, CA, USA) 

according to the manufacture’s manual. Fragmented and labelled single strand (ss)-cDNA 

(quantity and quality verified via Nanodrop-8000 and Agilent 2100 Bioanalyzer) of each 

sample was hybridized onto a Human Transcriptome Array (HTA) 2.0 GeneChip® 

(Affymetrix). Hybridization, washing and scanning of the GeneChips was performed using 

the Affymetrix GeneChip® Hybridization oven 640, Fluidics Station 450/250 and Scanner 

3000, according to the manufacture’s user guides. Quality control of the scanned HTA 2.0 

GeneChips was performed using the Expression Console application (Affymetrix Launcher 

software). Gene chip data were analyzed using the MADMAX database and analysis 

pipeline 2. Probe sets were defined according to Dail et al. 3. Ranked gene lists based on the 

intensity based moderated t-statistics 4 were used as input for Gene Set Enrichment 

Analysis, which was run with 1000 permutations 5,6. Functional data analysis was based 

upon FDR q-value <0.2 on the filtered data set (IQR > 0.2 (log2), intensity >20, >5 arrays, 

>5 probes per gen). The data discussed in this publication have been deposited in NCBI's 

Gene Expression Omnibus 7 and are accessible through GEO Series accession number 

GSE71614 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71614). 

Skeletal muscle lipid composition 

For determination of lipid composition, skeletal muscle biopsies were dissected free from 

extramyocellular adipose, blood and connective tissue before lyophilisation. Total lipids 

were extracted after addition of internal standards by the chloroform-methanol (2:1 vol/vol) 

method. After evaporation under nitrogen at 37 °C, lipids were separated into 

diacylglycerol (DAG) and triacylglycerol (TAG) by thin-layer chromatography and 

transferred into tubes for methylation with 1 mL of toluene-methanol BF3-methanol (14 %, 
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20-55-25 %). Incubation in capped tubes for 30 minutes at 100 °C was followed by addition 

of 2 mL pentane to the samples and after vortexing and centrifugation (1000 g, 5 min, 20 

°C) pentane extracts were isolated and evaporated (nitrogen, 30 °C) before fatty acid 

profiles were determined on an analytical gas chromatograph, as described previously 8. 

High-fat mixed meal composition 

Ingredients: 

125 g whole milk 

15 g sucrose 

50 g whipped crème 

150 g whipped crème ice 

Macronutrient composition: 

Energy content, 625 kcal 

protein, 6.3 energy% 

carbohydrate, 32.6 energy% 

fat, 61.2 energy% 

saturated fatty acids, 35.5 energy% 

mono-unsaturated fatty acids, 18.8 energy% 

poly-unsaturated	fatty	acids,	1.7	energy%	
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Supplemental Results 

 

Supplemental Figure 4.S1. Local fasting and postprandial interstitial blood flow before and 

after intervention  

Values are given as means ± SEM (n=17). Fasting and postprandial interstitial local blood flow 
(ethanol outflow/inflow-ratio) were measured by means of microdialysis in skeletal muscle (m. 
gastrocnemius; A) and abdominal subcutaneous adipose tissue (B) of male subjects. Fasting values, 
AUCs during the HFMM-test and the incremental AUCs were analyzed using a two-way repeated 
measures ANOVA, with time (Ptime, pre, post) and treatment (Ptreatment, PLA, E+R) as factors. A 
P<0.05 was considered as statistically significant. Reported P-values refer to the AUCs of the 
respective metabolite concentrations. AT, adipose tissue; SM, skeletal muscle. Dashed line, open 
circles: PLA pre; solid line, filled circles: PLA post; Dashed line, open squares: E+R pre; solid line, 
filled squares: E+R post. 
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Supplemental Figure 4.S2. Local fasting and postprandial interstitial metabolite 

concentrations before and after intervention  

Values are given as means ± SEM (n=17). Fasting and postprandial interstitial metabolite 
concentrations (glycerol, glucose, lactate and pyruvate) were measured by means of microdialysis in 
skeletal muscle (m. gastrocnemius; A-D) and abdominal subcutaneous adipose tissue (E-H) of male 
subjects. Fasting values, AUCs during the HFMM-test and the incremental AUCs were analyzed 
using a two-way repeated measures ANOVA, with time (Ptime, pre, post) and treatment (Ptreatment, 
PLA, E+R) as factors. A P<0.05 was considered as statistically significant. Reported P-values refer to 
the AUCs of the respective metabolite concentrations. AT, adipose tissue; SM, skeletal muscle. 
Dashed line, open circles: PLA pre; solid line, filled circles: PLA post; Dashed line, open squares: 
E+R pre; solid line, filled squares: E+R post. 
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Abstract 

Objective: Alterations in adipose tissue (AT) morphology and function are associated with 

obesity-related chronic diseases. Dietary polyphenols may have beneficial effects on AT 

mass and function in rodents, but human studies are scarce.  

Methods: In a randomized, placebo-controlled study, 25 (15 men) overweight and obese 

humans received a combination of epigallocatechin-3-gallate and resveratrol (282 mg/d, 80 

mg/d, respectively, E+R) or placebo (PLA) supplementation for 12 weeks. Before and after 

intervention, AT biopsies were collected for assessment of adipocyte morphology and 

microarray analysis.  

Results: E+R supplementation had no significant effects on mean adipocyte size and 

distribution compared with PLA. However, pathways contributing to adipogenesis, cell 

cycle and apoptosis were significantly downregulated in AT by E+R versus PLA. 

Furthermore, E+R significantly decreased the expression of genes involved in pathways 

related to substrate and energy metabolism, oxidative stress, inflammation and immune 

defense as compared with PLA.  

Conclusion: In conclusion, the AT gene expression profile indicates a reduced cell 

turnover after 12-week E+R supplementation in overweight and obese subjects. It remains 

to be elucidated whether these alterations translate into metabolic effects in the longer term. 
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Introduction 

Enlargement of abdominal subcutaneous adipocytes is an independent marker of insulin 

resistance 1, and predicts the development of type 2 diabetes 2. This suggests that the 

morphology and function of adipose tissue (AT), rather than AT mass per se, determine the 

risk of developing chronic metabolic conditions accompanying the obese phenotype.  

Epigallocatechin-3-gallate (E) and resveratrol (R) are dietary polyphenols, abundantly 

available in green tea and in grapes, respectively. Both have been shown to prevent the 

development of fat mass accretion and insulin resistance in rodents on obesogenic diets via 

inhibition of adipogenesis and inflammation, and increased lipolysis and energy 

expenditure 3-6. However, most human studies have not found significant effects on AT 

mass (body composition) and whole-body metabolic profile after supplementation with 

either E or R 7,8, Nevertheless, R supplementation for 4 weeks induced a reduction in 

adipocyte size in obese men 9, which was accompanied by an AT gene expression profile 

indicative of increased adipogenesis, autophagy and inflammation. We have recently 

postulated that combining different polyphenols may lead to additional and/or synergistic 

and, therefore, more pronounced metabolic effects compared with single supplementation. 

Indeed, combined E and R (E+R) supplementation for 3 days increased fasting and 

postprandial energy expenditure and plasma leptin concentrations in overweight subjects 10. 

More recently, we have shown that combined E+R supplementation for 12 weeks increased 

whole-body fat oxidation and mitochondrial capacity in skeletal muscle, but did not 

significantly alter whole-body lipolysis, AT and skeletal muscle lipolysis and tissue-

specific insulin sensitivity. Here, we investigated whether E+R supplementation for 12 

weeks induced alterations in abdominal subcutaneous AT morphology and gene expression 

profiles in overweight and obese men and women compared with placebo (PLA).  

 

Subjects and methods 

Study design 

The current study was conducted as part of a randomized, double-blind placebo-controlled 

intervention trial. The effects of 12 weeks E+R supplementation (282 mg/d and 80 mg/d, 
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respectively) on insulin sensitivity and lipid metabolism were investigated in 38 overweight 

and obese men and women. Before and after intervention, an abdominal subcutaneous AT 

biopsy was collected after an overnight fast. All subjects gave written informed consent for 

participation in the original study, which was approved by the Medical Ethical Committee 

of Maastricht University Medical Center+. All procedures were conducted according to the 

Declaration of Helsinki.  

Abdominal subcutaneous adipocyte size  

The AT biopsy (~1 g) was taken under local anesthesia using a needle biopsy technique 11 

and snap-frozen at -80 °C until further analyses. One portion of the biopsy was embedded 

in paraffin, of which sections were cut for staining, digital imaging and computerized 

measurement of 400 individual adipocytes to determine adipocyte morphology 11.  

Adipose tissue gene and protein expression 

For microarray analysis, total RNA was extracted from frozen AT aliquots (~300 mg) using 

the Trizol method (Qiagen, Venlo, Netherlands). Fragmented and labeled ss-cDNA of each 

sample was hybridized onto a Human Transcriptome Array (HTA) 2.0 GeneChip® 

(Affymetrix) 12. Functional data analysis was based upon FDR q-value <0.05 for the 

interaction (E+R versus PLA) with gene set enrichment analysis which was run with 1000 

permutations. An upstream analysis was performed on the differentially expressed genes 

(P<0.05) with Ingenuity Pathway Analysis (June 2015, QIAGEN Silicon Valley, Redwood 

City, CA, USA). After protein extraction, protein quantification of oxidative 

phosphorylation (OxPhos)-complexes was performed by Image Lab™ Software (V5.2.1. 

Build 11, BioRad, Venendaal, the Netherlands). 

Statistics 

Data are expressed as mean ± SEM. Variables were normally distributed. Baseline 

differences between the E+R and PLA group were tested by Student’s unpaired t-test. The 

effects of E+R supplementation compared with PLA were analyzed using repeated-

measures ANOVA (time*treatment interaction). Statistics was done using SPSS 19.0 (IBM 

Corporation, Armonk, NY, USA) for Macintosh. P<0.05 was considered as statistically 

significant.  
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Results 

Subjects characteristics 

Twenty-five subjects (15 men) were included in the present sub-study, since AT biopsies 

were not available for all individuals that completed the main trial (n=38). At baseline, 

subject characteristics were not significantly different between groups in the total study 

population 12, and were comparable in the present sub-study (Table 5.1).  

Table 5.1. Subjects' characteristics and plasma biochemistry 

  PLA, n=14 E+R, n=11   
  Week 0 Week 12 Week 0 Week 12 P 
Age, years 40 ± 3 - 36 ± 3 -  
Body-mass-index, kg/m2 29.7 ± 1.1 - 30.5 ± 0.7 -  
Waist-hip-ratio 0.88 ± 0.03 - 0.88 ± 0.03 -  
Diastolic blood pressure, mmHg 111 ± 3 - 119 ± 2 -  
Systolic blood pressure, mmHg 74 ± 2 - 76 ± 2 -  
HbA1c, % 5.15 ± 0.08 - 5.05 ± 0.06 -  
Glucose, mmol/l 5.11 ± 0.11 5.12 ± 0.12 5.13 ± 0.13 5.08 ± 0.14 0.50 
2h glucose, mmol/l 5.29 ± 0.29 - 5.19 ± 0.30 -  
Insulin, mU/l 8.97 ± 1.19 10.55 ± 1.06 8.70 ± 1.34 7.84 ± 1.20 0.03 
HOMA-IR 2.03 ± 0.26 2.39 ± 0.24 1.97 ± 0.29 1.77 ± 0.27 0.03 
Free fatty acids, µmol/l 532 ± 32 491 ± 18 497 ± 55 532 ± 53 0.33 
Triacylglycerol, mmol/l 1.06 ± 0.22 1.31 ± 0.24 1.75 ± 0.25 1.93 ± 0.27 0.65 
Adiponectin, µg/ml 8.27 ± 1.00 8.57 ± 1.00 6.98 ± 1.12 7.13 ± 1.13 0.77 
Leptin, ng/ml 23.1 ± 4.5 24.3 ± 4.5 17.8 ± 5.1 16.1 ± 5.1 0.16 
Interleukin-6, pg/ml 1.00 ± 0.17 0.91 ± 0.13 0.69 ± 0.19 0.77 ± 0.14 0.46 
Interleukin-8, pg/ml 9.28 ± 0.94 10.32 ± 1.06 9.79 ± 1.07 9.79 ± 1.20 0.43 
TNF-α, pg/ml 2.86 ± 0.24 3.30 ± 0.46 2.87 ± 0.27 2.81 ± 0.52 0.26 
E, ng/ml <2.5 <2.5 <2.5 15 ± 10 0.00 
R, ng/ml <10 <10 <10 233 ± 55 0.00 
Dihydro-R, ng/ml <10 <10 <10 177 ± 35 0.00 

WHR, waist-to-hip-ratio; HbA1c, glycated hemoglobin A 1c; 2h-glucose, plasma glucose after oral 
glucose-tolerance test; HOMA-IR, Homeostatic Model Assessment of insulin resistance; TNF-α, 
tumor necrosis factor alpha; E, epigallocatechin-3-gallate; R, resveratrol. Values given as 
mean±SEM. P, P-value for statistical significance of time*treatment interaction.  
 

Adipocyte size 

E+R supplementation had no significant effect on mean adipocyte size or surface area in 

abdominal subcutaneous AT (Figure 5.1A-B). In line, adipocyte size distribution was 

unchanged after E+R supplementation (Figure 5.1C), indicating that E+R did not induce a 

shift from large to small adipocytes or vice versa.  
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Figure 5.1. Abdominal subcutaneous adipocyte morphology and OxPhos protein 

expression before and after intervention. 

A) Mean adipocyte diameter, B) surface area and C) adipocyte size distribution, and D) mitochondrial 
protein content of complexes I-V were not affected by E+R supplementation compared with PLA. 
Open bars: week 0; solid bars: week 12. Statistical significance of time*supplementation interaction 
indicated as *, when P<0.05. Values are given as means ± SEM. 
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Adipose tissue OxPhos protein expression 

Protein expression of mitochondrial complex V tended to be decreased by E+R 

supplementation compared with PLA (P=0.11, Figure 5.1D). Furthermore, complexes II, III 

and I+IV were not significantly affected by E+R (P=0.31, P=0.61, P=0.55, respectively).  

Adipose tissue gene expression profile 

Of the 26876 genes on the array, 10987 were analyzed after filtering (IQR>0.2 (log2), 

intensity>20, >5 arrays, >5 probes per gene). 763 genes were differentially expressed after 

E+R supplementation as compared to PLA (P<0.05), of which 424 genes were significantly 

upregulated. 

Gene set enrichment analyses 

E+R supplementation induced a downregulation of 332 pathways (Databases Kyoto 

Encyclopedia of Genes and Genomes, Wikipathways, Biocarta) compared with PLA, 

whereas no pathways were significantly upregulated. More specific, gene sets related to cell 

turnover (circadian rhythm, cytoskeleton and autophagy) and transcription and translaton 

were suppressed (Figure 5.2). Furthermore, E+R decreased the expression of pathways 

related to energy and substrate metabolism, oxidative stress, immune defense (Figure 5.2) 

and various diseases, including Alzheimer’s, types of cancer, and infectious, immune and 

inflammatory diseases.  

Ingenuity analyses 

Upstream analyses of significantly altered genes (n=763) revealed that possible regulators 

of adipogenesis (β-estradiol, Prolactin), oxidative stress (Genistein, nuclear factor and 

erythroid 2-like 2) and inflammation (TNF-α)	 were significantly decreased after E+R 

versus PLA supplementation (Table 5.2.). In line, pathways regulated by anti-carcinogenic 

and immune-suppressant drugs were activated and implicate an inhibited proliferation 

capacity (5-Flourouracil, Trichostatin A, Gentamicin, CD 437 and sirolimus). 
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Figure 5.2. Adipose tissue gene expression changes by intervention.  

Gene set enrichment analysis of adipose tissue microarray data revealed that gene sets (Kyoto 
Encyclopedia of Genes and Genomes database) related to cell turnover (1-19), energy and substrate 
metabolism (20-40), inflammation and the immune system (41-48) were significantly downregulated 
following E+R supplementation (PLA, n=12; E+R, n=6). Red color indicates downregulated 
pathways, whereas green color indicates upregulated pathways after E+R versus PLA. 
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Discussion 

Numerous rodent studies have demonstrated that dietary polyphenols, including E and R, 

modulate AT biology 3,5. Here, we demonstrate that supplementation of E+R for 12 weeks 

downregulated pathways related to adipocyte turnover, energy metabolism, inflammation 

and the immune defense. Strikingly, however, E+R did not induce alterations in adipocyte 

morphology or OxPhos protein expression in overweight and obese subjects.  

Table 5.2. Ingenuity upstream analysis including related genes 

  
Upstream 
regulator 

Downstream 
targets/pathways   genes P 

Adipogenesis     

Inhibited β-Estradiol adipogenesis chemical - 
endogenous 
mammalian 

49 0.040 

Inhibited Prolactin early in adipogenesis cytokine 30 0.000 

Activated miR-124-3p adipogenic mature 
microRNA 

24 0.001 

Oxidative stress         

Inhibited Genistein PPARs, NRF, autophagy chemical 
drug 

34 0.000 

Inhibited NFE2L2, =NRF2 antioxidant defense transcription 
regulator 

31 0.001 

Inflammation and Immune defense     

Inhibited TNF-α inflammation cytokine 49 0.023 

Activated Sirolimus 
(=Rapamycin) 

impairs T- & B-cell proliferation and 
activation 

chemical 
drug 

29 0.007 

Anti-carcinogenic         

Inhibited Trichostatin A antibiotic, inhibits histone 
deacetylase 

chemical 
drug 

30 0.040 

Inhibited Gentamicin antibiotic, binds bacterial ribosome chemical 
drug 

24 0.002 

Activated 5-Fluorouracil cytostaticum chemical 
drug 

26 0.000 

Activated CD 437 adipogenesis, anti-carcinogenic (by 
ER-stress) 

chemical 
drug 

25 0.000 

PPAR-α, Peroxisome proliferator-activated receptor α; NFE2L2, Nuclear factor (erythroid-derived 
2)-like 2 (=NRF2); TNF-α, tumor necrosis factor α. P, statistical significance of activation/inhibition 
of upstream regulator for post versus pre-enrichment. 
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Interestingly, the present study demonstrated that E+R supplementation decreased the 

expression of gene sets related to adipogenesis and apoptosis, which is indicative of a 

reduced adipocyte turnover. This, in turn, may have caused the reduction in the expression 

of pathways related to substrate metabolism and mitochondrial function, because of lower 

energy requirements of AT. Importantly, a low turnover rate of adipocytes may reflect a 

less flexible metabolic phenotype. Indeed, decreased adipocyte and lipid turnover has been 

related to hypertrophic, dysfunctional AT 13, obesity 14 and familial combined 

hyperlipidemia 15. Nevertheless, the observed inactivation of pathways corresponding to 

adipocyte turnover did not translate into a change in adipocyte size or AT mass in the 

present study. Moreover, we have previously found that E+R supplementation had no 

significant effects on AT lipolysis and insulin sensitivity, assessed during a high-fat mixed-

meal test (625 kcal, 61 energy% fat) by means of microdialysis and expressed as insulin-

mediated suppression of plasma FFA, respectively 12.  

At first glance, the present data seem in contrast to a previous study of our group, 

demonstrating that adipocyte size was significantly reduced, whereas fat mass was 

unchanged, after 30 days of R supplementation (150 mg/d) in obese men 9. In that study, 

gene expression and pathway analysis indicated that R increased adipogenesis and 

enhanced lysosomal and phagosomal lipid breakdown, which may have contributed to the 

observed reduction in adipocyte size 9. Importantly, however, the duration of 

supplementation (12 vs. 4 weeks), the lower dose of R and the addition of E as supplement 

in the present study might explain these opposing findings.  

Intriguingly, the present data demonstrate that pathways related to oxidative stress, 

inflammation and the immune response were downregulated in AT after E+R intake 

compared with PLA. These findings are consistent with previous studies showing anti-

oxidant and anti-proliferative effects of E and R, which led to the administration of 

polyphenols in chemoprevention and cancer therapy (reviewed in 16,17). However, due to the 

importance of oxidative stress and autophagy in cell and tissue homeostasis, cancer 

development and cardiometabolic complications 18,19, the (patho)physiological relevance of 

the present findings over a longer period of time remains to be investigated. Contrary to our 

observations, Konings et al. 9 reported an elevated gene expression for pathways related to 

immune response. This was interpreted as subsequent effect induced by an increased 

lysosomal lipid breakdown, and by the decrease in adipocyte size causing traction forces 
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between the fat cells and their embedding extracellular matrix. As indicated above, both 

duration of supplementation and the addition of E supplementation may have played a role 

in these differential findings. 

In conclusion, the present study illustrated that E+R supplementation for 12 weeks induced 

significant suppression of gene sets related to adipocyte turnover, inflammation and the 

immune system in AT in overweight and obese men and women. Although E+R did not 

induce any significant effects on body composition, AT morphology and insulin sensitivity 
12, it remains to be determined how the alterations in the AT gene expression pattern may 

translate into changes in metabolic health in the longer term.  
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Abstract 

Aims: Gut microbiota composition may play an important role in the development of 

obesity-related comorbidities. However, only few studies have investigated gender-

differences in microbiota composition and gender-specific associations with insulin 

sensitivity. 

Methods: Insulin sensitivity (hyperinsulinemic-euglycemic clamp), body composition 

(Dual Energy X-ray Absorptiometry), substrate oxidation (indirect calorimetry), systemic 

inflammatory markers and microbiota composition (PCR) were determined in male (n=15) 

and female (n=14) overweight and obese subjects. 

Results: Bacteroidetes/Firmicutes-ratio was higher in men than in women (P=0.001). 

Bacteroidetes/Firmicutes-ratio was inversely related to peripheral insulin sensitivity only in 

men (men: P=0.003, women: P=0.882). This association between Bacteroidetes/Firmicutes-

ratio and peripheral insulin sensitivity did not change after adjustment for dietary fiber and 

saturated fat intake, body composition, fat oxidation and markers of inflammation. 

Bacteroidetes/Firmicutes-ratio was not associated with hepatic insulin sensitivity. 

Conclusion: Men and women differ in microbiota composition and its impact on insulin 

sensitivity, implying that women might be less sensitive to gut microbiota-induced 

metabolic aberrations than men.  
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Introduction 

Gut microbiota dysbiosis has been associated with metabolic impairments, such as 

dyslipidemia and insulin resistance in obese, non-diabetic subjects 1. However, gender 

differences have been widely ignored in most studies. Here, we analyzed cross-sectional 

data of overweight and obese, non-diabetic Caucasian men (n=15) and women (n=14) on 

microbiota composition, and gender-specifically investigated the relationship between 

bacterial abundances and the host metabolic phenotype, determined by gold-standard 

techniques for insulin sensitivity, substrate oxidation and body composition. 

 

Methods 

Analyzed data were baseline measurements from subjects that were recruited for a 12-wk 

polyphenol-supplementation study, in which effects on insulin sensitivity (primary 

outcome), substrate oxidation and microbiota composition (secondary outcomes) were 

assessed. Participants completed a detailed medical and lifestyle questionnaire, were 

sedentary (<3 h/wk in sports activities) and had no cardiometabolic or gastrointestinal 

complications or disease. Subjects had been weight-stable and had not taken antibiotics or 

medication that may interfere with study outcomes for at least 3 months prior to enrollment. 

We assessed insulin sensitivity by combining a two-step hyperinsulinemic–euglycemic 

clamp with stable-isotope [6,6-2H2]-glucose tracer-infusion (Cambridge Isotope 

Laboratories, Andover, MA, USA) 2. This enabled determination of peripheral and hepatic 

insulin sensitivity, expressed as insulin-stimulated rate of disappearance (Rd, 

µmol/(kg*min)) at an infusion-rate of 40mU/(m2*min) and suppression of endogenous 

glucose production (suppression EGP, %) at 10 mU(m2*min), respectively. 

Fecal samples were collected and immediately frozen at -80 °C until further analysis. For 

enumeration of selected bacterial groups, metagenomic DNA was extracted and subjected 

to PCR assays targeting the major bacterial phyla (Applied Biosystems, Waltham, USA). 

For γ-Proteobacteria, Actinobacteria, Akkermansia muciniphila (phylum Verrucomicrobia) 

and Bacteroidetes, detection of PCR-products was conducted with SYBR Green I (Bio-rad 

Laboratories Inc, Hercules, Canada) 3,4. For Firmicutes, the 5’-nuclease technique was used 

(ABgene, Hamburg, Germany) 5. Dietary intake of saturated fat (expressed as percentage of 
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energy intake, %EI) and fiber (g/MJ) were calculated from 3-day food records using the 

Dutch food table (NEVO). Body fat percentage was determined by a Dual Energy X-ray 

Absorptiometry (DXA, Hologic BCA, VitaK, Maastricht, Netherlands) and waist and hip 

circumferences were measured using a non-expandable measuring tape midway between 

the lower rib margin and the iliac crest (“waist”), respectively, at largest circumference 

between the waist and the thighs (“hip”). Energy expenditure (EE) and fat oxidation 

(expressed as percentage of EE, %EE) was determined by means of indirect calorimetry 

(Omnical, Maastricht University, Maastricht, Netherlands) in a half-supine position during 

fasting conditions and for 4 hours postprandially (2.6 MJ, 61 energy% fat) 6. Fasting blood 

samples were taken for measurements of tumor necrosis factor-α (TNF-α) and interleukin-6 

(IL-6) using a multiplex ELISA (Human ProInflammatory II 4-Plex Ultra-Sensitive Kit, 

Meso Scale Diagnositics, Rockville, MD, USA). 

Gender differences were analyzed by Students’ unpaired t-test. All variables were tested for 

outliers and normal distribution (Shapiro-Wilk). We performed regression analyses gender-

specifically with insulin sensitivity as dependent and bacterial groups as independent 

variables, corrected for age (Model 1). Statistically significant relations were then 

subsequently adjusted for putative relevant covariates. Independent variables were included 

for food intake (FI, dietary saturated fat and fiber, Model 1+FI), body composition (BC, 

body fat percentage and distribution, Model 1+BC), fat oxidation (FO, fasting and 

postprandial, Model 1+FO) and systemic inflammatory markers (SIM, TNF-α and IL-6, 

Model 1+SIM). TNF-α was ln-transformed, because it was not normally distributed. 

Independent variables showed no inter-correlations (defined as r>0.80).  

All subjects gave written informed consent before participation in this study, which was 

reviewed and approved by the local Medical Ethical Committee of Maastricht University 

Medical Centre+. All procedures were performed according to the declaration of Helsinki. 

 

Results 

We found higher abundances of γ-Proteobacteria and Bacteroidetes in men than women, 

while presence of other phyla were not different between gender (Table 6.1). Furthermore, 

the B/F-ratio was significantly higher in men as compared to women (P<0.001, Table 6.1). 
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Table 6.1. Subjects' characteristics 

    Men, n=15 Women, n=14 P 
          
Subjects characteristics Age, yrs 39.2 ± 2.4 35.1 ± 3.0 0.29 

Body-mass-index, kg/m2 29.4 ± 0.7 29.4 ± 0.7 0.99 
Insulin sensitivity Rd, µmol/kg/min 29.6 ± 2.4 35.6 ± 3.2 0.14 

EGP suppression, % 46.5 ± 5.4 68.4 ± 3.3 0.00 
Food intake Fiber, g/MJ 1.8 ± 0.1 1.9 ± 0.2 0.74 

Saturated fatty acids, %EI 17.9 ± 0.9 16.8 ± 0.8 0.37 
Body composition Body fat, % 23.4 ± 0.8 37.0 ± 1.0 0.00 

Waist-hip-ratio 0.92 ± 0.02 0.79 ± 0.01 0.00 
Visceral fat, g 500 ± 45 387 ± 42 0.08 

Fat oxidation Fasting, %EE 56.1 ± 2.8 54.7 ± 3.8 0.77 
Postprandial, %EE 52.5 ± 2.7 45.3 ± 2.5 0.06 

Systemic inflammation TNF-α, pg/ml 3.49 ± 0.22 2.28 ± 0.09 0.00 
IL-6, pg/ml 0.73 ± 0.14 0.93 ± 0.17 0.37 

Bacterial composition γ-Proteobacteria, log 11.3 ± 0.1 10.9 ± 0.1 0.03 
Actinobacteria, log 11.5 ± 0.1 11.7 ± 0.1 0.35 
Akkermansia, log 8.7 ± 0.5 9.6 ± 0.4 0.19 
Firmicutes, log 12.3 ± 0.1 12.4 ± 0.1 0.40 
Bacteroidetes, log 13.2 ± 0.1 12.8 ± 0.1 0.00 
B/F-ratio 10.13 ± 1.66 3.15 ± 0.48 0.00 

Rd, insulin-stimulated glucose rate of disappearance; EGP, insulin-mediated suppression of 
endogenous glucose production; EI, total daily energy intake; EE, energy expenditure; TNF-α, tumor 
necrosis factor-alpha; IL-6, Interleukin 6; B/F-ratio, fecal Bacteroidetes/Firmicutes-ratio; P, statistical 
significance of difference between men and women by Student's unpaired t-test. 
 

Interestingly, a significant inverse linear association was found between the B/F-ratio and 

peripheral insulin sensitivity in men (P=0.003, Figure 6.1A) but not in women (P=0.882, 

Figure 6.1B). No significant correlations were found between B/F-ratio and hepatic insulin 

sensitivity for both gender (Figure 6.1C-D). Specific phyla abundances (γ-Proteobacteria, 

Actinobacteria, Akkermansia muciniphila, Bacteroidetes and Firmicutes) were not 

significantly correlated with any measure of insulin sensitivity in men or women (data not 

shown).  
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Figure 6.1. Relations between Bacteroidetes/Firmicutes-ratio and insulin sensitivity by 

gender 

Bacteroidetes/Firmicutes-ratio (B/F-ratio) plotted against peripheral (A-B) and hepatic (C-D) insulin 
sensitivity of men (filled circles) and women (open squares), Rd: insulin-stimulated glucose rate of 
disappearance, suppression EGP: insulin-mediated suppression of endogenous glucose production. 
 

Dietary fiber and saturated fat intake (relative to energy intake) were comparable for men 

and women, while body fat percentage and distribution were different, as expected (Table 

6.1). While fasting fat oxidation (%EE) and IL-6 were comparable between gender, 

postprandial fat oxidation (%EE) and TNF-α were higher in men versus women (Table 

6.1). Further adjustment for dietary fiber and saturated fat intake (Model 1+FI), body fat 

percentage and distribution (Model 1+BC), fasting and postprandial fat oxidation (Model 

1+FO) and plasma inflammatory markers, TNF-α and IL-6 (Model 1+SIM) did not change 

the relation between B/F-ratio and peripheral insulin sensitivity in men, as indicated by 

similar standardized beta-coefficients for the B/F-ratio in the models (Model 1: Std.β(B/F-

ratio)=-0.71, P=0.005; Model 1+FI: -0.70, 0.011, Model 1+BC: -0.79, 0.004, Model 1+FO: 

-0.65, 0.013, Model 1+SIM: -0.75, 0.005). 
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Discussion 

The Bacteroidetes-content and the B/F-ratio were significantly higher in men as compared 

to women, which is in line with previous findings 7. Importantly, differences in ethnicity 

(Caucasian), age (20-50 years), BMI (27-40 kg/m2) and regular exercise (<3 h/wk) cannot 

explain these discrepancies, because groups were well-matched for these parameters in the 

present study. However, early life acquisition (delivery mode, breastfeeding status, use of 

antibiotics), lifestyle (local environment, eating and defecation pattern, exercise) and the 

hormonal environment may underlie the gender-specific microbiota composition.  

Interestingly, we found an inverse association between the B/F-ratio and peripheral insulin 

sensitivity, assessed using the gold-standard hyperinsulinemic-euglycemic clamp, in men 

but not in women. Thus, the impact of microbiota on tissue-specific insulin sensitivity 

seems to differ between gender. Indeed, there is evidence for an increased gender-specific 

susceptibility to obesity and related co-morbidities after induction of microbial dysbiosis 8,9. 

While no such information is available for adult humans yet, childhood obesity was 

significantly more associated to early life antibiotic exposure in boys than girls (5-8 years) 

after adjustment for several cofactors 8. Likewise, the combination of antibiotic-treatment 

and high-fat diet, independently and synergistically, evoked alterations in microbial 

composition, increased obesity and hepatic steatosis, with all these effects being more 

pronounced in male than female mice 9. Of note, this detrimental phenotype was also 

observed after transfer of cecal microbiota from antibiotic-treated animals to germ-free 

mice, eliminating direct effects of antibiotic treatment itself. Finally also gender-specific 

effects of diet on vertebrate’s microbiota have been previously reported 10. Therefore, it is 

tempting to speculate that our gut microbiota may be involved as a determinant in 

differential gender-related metabolic responses to dietary interventions. 

The inverse relationship between B/F-ratio and peripheral insulin sensitivity in men is 

consistent with a relative higher abundance of Bacteroidetes and deteriorated metabolic 

profile in non-diabetic subjects 1. Likewise, a reduction in Firmicutes and decreased 

peripheral insulin sensitivity was observed after antibiotic-treatment in obese men with the 

metabolic syndrome 11. Interestingly, in accordance with our findings, induced alterations 

in gut microbiota composition were paralleled by a reduction in peripheral, but not hepatic 

insulin sensitivity 11. 
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Several lifestyle and metabolic factors may mediate the relationship between B/F-ratio and 

insulin sensitivity 12. Dietary fiber intake has been associated with beneficial effects on 

glucose metabolism, while high-fat diets were associated with insulin resistance. A reduced 

bacterial diversity and altered microbial composition, induced by high-fat, low-fiber diets, 

may contribute to disturbances in substrate oxidation and insulin sensitivity by modulation 

of short-chain fatty acid and bile acid concentrations in the gut and circulation. 

Additionally, our microbiome may affect insulin sensitivity through induction of 

inflammatory and hormonal signals (lipopolysaccharides, respectively glucagon-like-

peptide 1). Taken together, there appears to be a strong interaction between dietary factors, 

the microbial composition and insulin resistance. Therefore, we investigated whether the 

relationship between the B/F-ratio and insulin sensitivity in men can, at least partly, be 

explained by lifestyle factors such as dietary fiber and saturated fat intake, or metabolic 

factors such as fat oxidation and low-grade inflammation. Strikingly, adjustment for the 

above-mentioned factors did not change the strong association between the B/F-ratio and 

peripheral insulin sensitivity in men, suggesting involvement of other factors. 

It is beyond the scope of this study, which is associative in nature, to draw any conclusions 

on putative mechanisms responsible for the strong association between B/F-ratio and 

peripheral insulin sensitivity. However, our data clearly indicate that microbiome-host 

interactions should be taken into account in controlled intervention studies. 

In conclusion, the present study demonstrated a significant difference in microbiota 

composition between men and women. Furthermore, we found a strong relationship 

between intestinal microbiota composition and peripheral, but not hepatic, insulin 

sensitivity in men but not in women, which remained unchanged after adjustment of dietary 

saturated fat and fiber intake, body composition, fat oxidation and systemic inflammation. 

Our findings are preliminary in nature and require confirmation in larger populations using 

state-of-the-art next generation sequencing. Understanding the etiology of microbial 

dysbiosis, and elucidating how the microbiota impacts host metabolism in a gender-specific 

manner may open new avenues for the treatment of obesity-related cardiometabolic 

disorders.  
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Abstract 

Background: The intestinal microbiota may have a profound impact on host metabolism. 

Since evidence suggests that polyphenols affect substrate utilization, the present study 

aimed to investigate the effects of polyphenol supplementation on intestinal microbiota 

composition in humans. Furthermore, we examined whether (changes in) gut microbiota 

composition may determine the metabolic response to polyphenol supplementation. 

Methods: In this randomized, double-blind, placebo-controlled trial, 37 overweight and 

obese men and women (18M/19F, 37.8±1.6 years, BMI: 29.6±0.5	kg/m2) received either 

epigallocatechin-3-gallate and resveratrol (E+R, 282 and 80 mg/d, respectively) or placebo 

for 12 weeks. Before and after intervention, feces samples were collected to determine 

microbiota composition. Fat oxidation was assessed by indirect calorimetry during a high-

fat mixed meal-test (2.6 MJ, 61 energy% fat), and skeletal muscle mitochondrial oxidative 

capacity by means of ex vivo respirometry on isolated skeletal muscle fibers. Body 

composition was measured by Dual Energy X-ray absorptiometry.  

Results: Fecal abundance of Bacteroidetes was higher in men as compared to women, 

whereas other assessed bacterial taxa were comparable. E+R supplementation significantly 

decreased Bacteroidetes and tended to reduce Faecalibacterium prausnitzii in men (P=0.05 

and P=0.10, respectively), but not in women (P=0.15 and P=0.77, respectively). Strikingly, 

baseline Bacteroidetes abundance was predictive for the E+R-induced increase in fat 

oxidation in men but not women. Other bacterial genera and species were not affected by 

E+R supplementation. 

Conclusion: We demonstrated that 12-wk E+R supplementation affected the gut 

microbiota composition in men but not women. Baseline microbiota composition 

determined the increase in fat oxidation after E+R supplementation in men.  
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Introduction 

The human intestinal microbiota consists of 1012 to 1014 bacteria and may significantly 

impact health status1. Microbiota richness, diversity and composition seem to be associated 

with the inflammatory and metabolic phenotype of the host 1-4. Although antibiotic or fecal 

transplantation studies provide important proof-of-principle evidence for the impact of the 

microbiota on host metabolism 5,6, dietary interventions may offer a more feasible approach 

to manipulate gut microbiota 7. 

Changes in macronutrient composition have been shown to affect the intestinal 

microbiota8,9 and improve insulin sensitivity in patients with type 2 diabetes 10. 

Interestingly, polyphenols may induce beneficial metabolic effects 11-13, which may, at least 

partly, be mediated by alterations of the gut microbiota composition. For example, 

polyphenol-enriched products induced alterations in microbial composition and had 

beneficial effects on insulin sensitivity 14-17, ectopic fat storage 14-16 and inflammation 15-19 

in rodents. In line, supplementation of the polyphenols epigallocatechin-3-gallate (E) and 

resveratrol (R) has been shown to improve markers of insulin sensitivity, inflammation and 

fat oxidation in humans 11,13,20,21. These effects have largely been attributed to direct effects 

on peripheral organs 22-24. Importantly, however, our gut microbes may play an important 

role in the conversion of polyphenols to bioactive compounds 25,26. Furthermore, 

polyphenols may modify the gut microbial composition, thereby acting as prebiotics 27. 

Until now, studies that have examined the effects of polyphenols on gut microbiota 

composition, and assessed the involvement of the intestinal microbiota in effects on 

peripheral metabolism are scarce 28.  

Here, we aimed to investigate the effects of combined E and R supplementation for 12 

weeks on gut microbiota composition in humans. Therefore, we measured fecal abundances 

of key microbial phyla and functional groups before and after 12-wk supplementation with 

either E+R or placebo (PLA) in overweight and obese men and women. Secondly, we 

examined whether (changes in) microbiota composition may underlie the E+R-induced 

improvement in lipid oxidation and mitochondrial oxidative capacity in humans that we 

have previously found 29. 
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Methods 

Study design 

In this randomized, double-blind, placebo-controlled study, which was a sub-study of a 

larger study designed to investigate the effects of polyphenol supplementation on insulin 

sensitivity, fat oxidation and skeletal muscle oxidative capacity 29, subjects received a 

combination of E and R supplements (E+R; 282 mg/d and 80 mg/d, respectively) or 

placebo (PLA; partly hydrolyzed microcrystalline cellulose-filled supplements) for a period 

of 12 weeks. Body composition was determined by Dual Energy Xray Absorptiometry 

(DXA, VitaK, Maastricht, Netherlands). 

Abundances of fecal microbiota were measured using stool samples. Sample collection and 

clinical measurements were performed before and in the last week of supplementation. 

Subjects were instructed to maintain their habitual lifestyle pattern throughout the study. 

Control visits were scheduled at week 2, 4, 8 of intervention. In week 0, 4 and 12, subjects 

were asked to fill in a 3-d food intake record in order to assess dietary intake.  

Subjects 

42 untrained (<3 h organized sports activities per week), weight-stable (<2 kg body weight 

change 3 months prior to inclusion), overweight/obese (BMI>25 kg/m2), but otherwise 

healthy Caucasian men and women (1:1) between 20 and 50 years with normal glucose 

tolerance, normal blood pressure were included in this study. Subjects were not allowed to 

use any antibiotics or medication/supplements that might interfere with insulin sensitivity 

and substrate metabolism for 3 months before entering the study. Daily intake of caffeine 

(<600 mg), green tea (<3 cups) and alcohol (<20 g) had to be limited. Detailed in- and 

exclusion criteria for study participants were published earlier 29. All subjects gave written 

informed consent for participation in this study, which was reviewed and approved by the 

local Medical Ethical Committee of Maastricht University Medical Centre+. All procedures 

were according to the declaration of Helsinki. 

Gut microbiota composition 

DNA-isolation 

Metagenomic DNA was isolated as described previously30. Briefly, approximately 200 mg 

of feces was added to a 2-mL vial containing 0.5 g zirconia beads (0.1 mm) and 4 glass 
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beads (3 mm) (BioSpec, Bartlesville, USA) and 1.2 mL of PSP lysis buffer (Stractec 

biomedical, Berlin, Germany). Samples were treated in a Magna Lyser at 5,5 ms in 3 cycli 

of 1 min and cooled on ice in between cycli. Subsequently, the DNA isolation was 

continued using the PSP SPIN Stool DNA plus kit as per the manufacturer’s instructions 

and finally eluted in 200 µL.  

Microbial analysis using real-time PCR assays  

DNA from all fecal samples was subjected to real-time PCR assays for the enumeration of 

the bacterial phyla γ-Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, as well as 

for the quantification of Akkermansia muciniphila, Faecalibacterium prausnitizii, sulphate-

reducing bacteria, acetogenic bacteria, and the archeon Methanobrevibacter smithii. 

For the enumeration of γ-Proteobacteria, Actinobacteria, Bacteroidetes, A. muciniphila, F. 

prausnitzii, sulphate-reducing bacteria and acetogens real-time detection of PCR products 

was conducted with SYBR Green I. The PCRs were conducted in a total volume of 25 µL, 

containing 1 x iQ™ SYBR® Green Supermix (Bio-rad Laboratories Inc, Hercules, 

Canada), 400 nM of both primers 31-35, and 2 µL of purified and tenfold diluted target DNA. 

Amplification, melting curve analysis and detection were conducted with the MiQ-Single-

Color real-time PCR Detection System (Bio-rad). 

The 5’-nuclease technique was used for the detection of Firmicutes and M. smithii as 

described previously 36. PCRs were conducted in a total volume of 25 µL, containing 1x 

ABsolute qPCR Mix (ABgene, Hamburg, Germany), 200 nM of both primers and 200 nM 

TaqMan probe, and 2 µL of purified and tenfold diluted target DNA. The amplification and 

detection were conducted with an Applied Biosystems Prism 7900 sequence detection 

system (Applied Biosystems, Waltham, USA). Serial dilutions of plasmid constructs 

containing the target sequences were used to create calibration curves for quantification. 

Fat oxidation and ex vivo mitochondrial oxidative capacity 

As described elsewhere 29, a high-fat mixed meal-test (HFMM, 2.6 MJ, 61.2 energy% fat) 

was performed to assess whole-body energy expenditure and fat oxidation before (t=0 min) 

and for 4 hours after ingestion of the HFMM by means of indirect calorimetry, using an 

open-circuit ventilated hood system (Omnical, Maastricht University, Maastricht, 

Netherlands). Mitochondrial oxidative capacity was measured by ex vivo high-resolution 

respirometry (Oroboros Instruments, Innsbruck, Austria) on permeabilized skeletal muscle 
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fibers that were isolated from biopsies (m. vastus lateralis), which were collected under 

fasting conditions under local anesthesia 37.  

Supplements 

The supplements were commercially available and kindly provided by Pure Encapsulations 

Inc. (Sudbury, MA, USA). All capsules were manufactured, tested and checked in 

accordance to standards of EU GMP requirements. 

E capsules contained 94 % epigallocatechin-3-gallate (141 mg per capsule) and R capsules 

20 % trans-resveratrol (40 mg per capsule). Two kinds of placebo capsules 

(Microcrystalline cellulose) were used for blinding. Capsules were packed into white 

opaque boxes, labeled per subject without indication of the content. After completion of the 

study, returned capsules were counted for compliance. 

Statistics 

All data are expressed as mean ± SEM. Log10 DNA copies for a given microbial 

group/species per gram of wet weight feces were calculated for each stool sample from the 

Ct-values using the constructed calibration curves. 

Analyses were performed by gender because of differences in bacterial composition. 

Differences between supplementation groups were analyzed using repeated-measures 

ANOVA with time and supplementation as factors. Regression analysis was performed to 

assess relations between baseline abundances or intervention-induced changes (ΔWeek12-

Week0) in the abundance of microbial taxa and changes in fat oxidation and muscle 

mitochondrial oxidative capacity in the E+R group (men, n=7; women, n=7). Microbial 

abundances and E+R-induced changes in microbial abundances were used as independent 

variable and changes in fat oxidation and mitochondrial oxidative capacity as dependent 

variables. Variables were normally distributed and the mean of the dependent variable 

([week 0 + week 12]/2) was included in the model to correct for regression to the mean. 

Statistics was done using SPSS 19.0 (IBM Corporation, Armonk, NY, USA) for Macintosh. 

P<0.05 of the interaction term (time*supplementation) and for the standardized β within a 

regression term was considered as statistically significant.  
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Results 

Subjects characteristics 

42 overweight and obese but otherwise healthy men and women volunteered to participate 

in this study, of which 4 subjects (3 men, 1 women) dropped out (1 went traveling abroad, 1 

was re-employed at full-time job, 1 did not comply with supplementation and 1 

substantially changed diet and/or physical activity pattern). In addition, 1 female subject 

was excluded from analyses because of reported diarrhea. Characteristics of the thirty-

seven subjects who completed the study are summarized in Table 7.1. There were no 

significant differences between the E+R and PLA group with respect to baseline 

characteristics. Men had higher fasting plasma glucose and inflammatory cytokine levels 

(Table 7.1) but leptin and adiponectin concentrations were, as expected, significantly lower. 

Compliance was confirmed by counting returned supplements and increased plasma 

concentrations of E, R and dihydro-R after the intervention in the E+R-group as reported 

earlier 29. Energy intake and macronutrient composition were not significantly changed in 

the E+R and PLA group over time. 

Table 7.1. Baseline subjects’ characteristics  

  men women PLA E+R Pgender Pgroup 
              
Age, years 40.2 ± 2.1 35.6 ± 2.4 39.5 ± 2.3 36.1 ± 2.3 0.17 0.30 
Weight, kg 96.3 ± 3.5 83.2 ± 2.2 87.1 ± 2.9 92.2 ± 3.5 0.00 0.28 
BMI, kg/m2 30.0 ± 0.8 29.2 ± 0.6 29.3 ± 0.8 29.9 ± 0.6 0.46 0.50 
Body fat, % 24.4 ± 0.9 36.6 ± 0.9 29.7 ± 1.9 31.6 ± 1.4 0.00 0.45 
Waist-Hip-Ratio 0.94 ± 0.02 0.81 ± 0.02 0.88 ± 0.02 0.87 ± 0.02 0.00 0.66 
Diastolic BP, mmHg 118 ± 2   113 ± 2   114 ± 3   117 ± 2   0.15 0.30 
Systolic BP, mmHg 77 ± 2  75 ± 2  77 ± 2  76 ± 2  0.59 0.83 
Fasting glucose, mmol/l 5.29 ± 0.05 5.02 ± 0.10 5.11 ± 0.08 5.19 ± 0.09 0.03 0.52 
2h-glucose, mmol/l 5.27 ± 0.24 5.48 ± 0.25 5.41 ± 0.23 5.34 ± 0.25 0.55 0.84 
HbA1c, % 5.16 ± 0.07 5.14 ± 0.06 5.17 ± 0.06 5.12 ± 0.06 0.79 0.57 
Adiponectin, mg/ml 6.4 ± 0.5 11.0 ± 0.8 8.8 ± 0.9 8.7 ± 0.8 0.00 0.93 
Leptin, ng/ml 10.8 ± 1.5  30.3 ± 3.0  21.7 ± 4.1  19.8 ± 2.4  0.00 0.68 
Interleukin-6, pg/ml 0.79 ± 0.14 0.88 ± 0.14 0.89 ± 0.17 0.77 ± 0.07 0.63 0.52 
Interleukin-8, pg/ml 10.9 ± 0.7  8.1 ± 0.7 9.1 ± 0.6 9.8 ± 0.9 0.01 0.55 
TNF-α, pg/ml 3.30 ± 0.22 2.30 ± 0.08 2.88 ± 0.22 2.69 ± 0.18 0.00 0.49 

BMI, body mass index; BP, blood pressure; 2h-glucose, plasma glucose concentration 2 h after oral 
glucose ingestion; HbA1c, glycated hemoglobin A1c; TNF-α, tumor necrosis factor-α; P, P-value for 
statistical difference between men (n=18) and women (n=19) and PLA (n=19) versus E+R (n=18), 
respectively. Values are given as mean ± SEM. 
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Gender differences in microbiota composition  

Fecal abundances of microbial groups were different between men and women (Table 7.2). 

Absolute abundances of γ-Proteobacteria (P=0.05) and Bacteroidetes (P<0.01) were higher 

in men as compared to women, while other phyla and species were comparable. The 

relative abundance of Bacteroidetes, expressed as percentage of the five dominant phyla, 

was higher in men than women (P<0.01), while Firmicutes (P<0.01) and Actinobacteria 

(P=0.04) abundance was relatively lower in men (Table 7.2). 

Table 7.2. Baseline abundances of bacterial phyla and species  

  men, n=18 women, n=19 P 
        
log10    
γ-Proteobacteria 11.29 ± 0.11 10.93 ± 0.14 0.05 
Actinobacteria 11.50 ± 0.08 11.55 ± 0.12 0.77 
A. muciniphila 8.77 ± 0.45 9.71 ± 0.36 0.11 
Firmicutes 12.33 ± 0.06 12.34 ± 0.06 0.83 
Bacteroidetes 13.21 ± 0.07 12.88 ± 0.06 0.00 
M. smithii 9.38 ± 0.33 8.95 ± 0.36 0.40 
F. prausnitzii 12.03 ± 0.09 11.98 ± 0.10 0.71 
Sulphate-reducing b. 10.54 ± 0.27 10.15 ± 0.41 0.43 
Acetogen b. 10.83 ± 0.06 10.88 ± 0.06 0.58 
B/F-ratio 9.4 ± 1.4 3.8 ± 0.5 0.00 
%    
γ-Proteobacteria 1.4 ± 0.3 1.3 ± 0.2 0.61 
Actinobacteria 2.5 ± 0.6 6.0 ± 1.6 0.05 
A. muciniphila 0.2 ± 0.1 0.7 ± 0.4 0.17 
Firmicutes 12.5 ± 1.6 22.7 ± 2.0 0.00 
Bacteroidetes 83.3 ± 2.0 69.3 ± 2.9 0.00 

Absolute (log10) and relative (%) abundances of bacterial phyla and species in 1 g wet weight of 
fecal samples. A, Akkermansia; B, bacteria; B/F-ratio, Bacteroidetes/Firmicutes-ratio; F, 
feacalibacterium; M, methanobrevibacter. P-value for statistical difference between gender. Values 
are given as means ± SEM. 
 

E+R supplementation decreased Bacteroidetes abundance in men but not women 

In men, E+R supplementation significantly reduced the abundance of Bacteroidetes 

(P=0.05) and tended to decrease F. prausnitizii-abundance as compared to PLA (P=0.10, 

Table 7.3). However, these changes were not observed in women (Table 7.4). The 

abundance of Firmicutes, Actinobacteria, γ-Proteobacteria and A. muciniphila (phylum 

Verrucomicrobiae), sulphate-reducing bacteria, acetogenic bacteria, and the archeon M. 
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smithii were not significantly affected by the intervention, neither in men (Table 7.3) not in 

women (Table 7.4).  

Table 7.3. The abundance of bacterial phyla and species before and after intervention in 

men 

  PLA, n=10 E+R, n=8   
  Week 0 Week 12 Week 0 Week 12 P 
log10      
γ-Proteobacteria 11.31 ± 0.16 11.20 ± 0.09 11.26 ± 0.13 10.95 ± 0.23 0.49 
Actinobacteria 11.51 ± 0.10 11.44 ± 0.07 11.50 ± 0.13 11.32 ± 0.20 0.59 
A. muciniphila 9.38 ± 0.56 8.17 ± 0.61 8.01 ± 0.65 7.29 ± 0.51 0.59 
Firmicutes 12.31 ± 0.09 12.33 ± 0.07 12.35 ± 0.07 12.17 ± 0.15 0.28 
Bacteroidetes 13.18 ± 0.09 13.19 ± 0.07 13.25 ± 0.11 12.94 ± 0.14 0.05 
M. smithii 9.31 ± 0.44 8.80 ± 0.42 9.56 ± 0.58 8.57 ± 0.72 0.75 
F. prausnitzii 11.99 ± 0.13 12.02 ± 0.13 12.08 ± 0.12 11.64 ± 0.30 0.10 
Sulphate-reducing b. 10.70 ± 0.24 10.57 ± 0.25 10.34 ± 0.54 9.38 ± 0.88 0.14 
Acetogen b. 10.76 ± 0.10 10.77 ± 0.06 10.92 ± 0.06 10.82 ± 0.16 0.47 
B/F-ratio 8.8 ± 1.6 8.9 ± 1.5 10.1 ± 2.7 6.4 ± 0.9 0.22 
%      
γ-Proteobacteria 1.7 ± 0.4 1.1 ± 0.2 1.1 ± 0.3 1.2 ± 0.4 0.30 
Actinobacteria 2.8 ± 1.0 1.7 ± 0.3 2.0 ± 0.5 2.8 ± 0.7 0.19 
A. muciniphila 0.4 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.37 
Firmicutes 12.6 ± 2.1 13.5 ± 2.9 12.5 ± 2.7 14.5 ± 1.8 0.79 
Bacteroidetes 82.5 ± 2.9 83.6 ± 3.2 84.3 ± 2.9 81.5 ± 1.8 0.38 

Absolute (log10) and relative (%) abundances of bacterial phyla and species in 1 g wet weight of 
fecal samples. A, Akkermansia; B, bacteria; B/F-ratio, Bacteroidetes/Firmicutes-ratio; F, 
feacalibacterium; M, methanobrevibacter. P-value for statistical significance for time*treatment 
interactions. Values are given as means ± SEM. 
 

Fat oxidation and mitochondrial oxidative capacity 

The effects of E+R supplementation on fat oxidation and mitochondrial oxidative capacity 

have been reported previously for the total group of participants 29. Briefly, fat oxidation, 

expressed as percentage of energy expenditure, was increased in the E+R group as 

compared to PLA during fasting (P=0.03) and postprandial conditions after consumption of 

a high-fat mixed meal (2.6 MJ, 61 energy% fat, P=0.02). In line, skeletal muscle 

mitochondrial oxidative capacity, assessed using ex vivo high-resolution respirometry, was 

increased after E+R supplementation versus PLA (P=0.01).  

  



Chapter 7 

166 

Table 7.4. The abundance of bacterial phyla and species before and after intervention in 

women 

  PLA, n=9 E+R, n=10   
  Week 0 Week 12 Week 0 Week 12 P 
log10      
γ-Proteobacteria 11.09 ± 0.08 11.17 ± 0.08 10.78 ± 0.26 10.99 ± 0.16 0.71 
Actinobacteria 11.61 ± 0.22 11.42 ± 0.14 11.48 ± 0.13 11.39 ± 0.12 0.70 
A. muciniphila 9.36 ± 0.63 9.20 ± 0.54 10.02 ± 0.39 9.94 ± 0.36 0.91 
Firmicutes 12.43 ± 0.07 12.32 ± 0.10 12.27 ± 0.10 12.22 ± 0.06 0.66 
Bacteroidetes 12.82 ± 0.08 12.96 ± 0.07 12.95 ± 0.10 12.87 ± 0.05 0.15 
M. smithii 9.81 ± 0.11 9.70 ± 0.11 8.66 ± 0.41 8.25 ± 0.79 0.93 
F. prausnitzii 11.92 ± 0.17 11.84 ± 0.19 12.03 ± 0.13 11.91 ± 0.09 0.77 
Sulphate-reducing b. 10.76 ± 0.10 10.76 ± 0.08 9.60 ± 0.74 10.07 ± 0.52 0.38 
Acetogen b. 10.91 ± 0.10 10.85 ± 0.08 10.86 ± 0.09 10.78 ± 0.07 0.71 
B/F-ratio 2.7 ± 0.5 4.7 ± 0.7 4.8 ± 0.8 4.9 ± 0.6 0.70 
%      
γ-Proteobacteria 1.3 ± 0.2 1.3 ± 0.1 1.2 ± 0.4 1.2 ± 0.3 0.91 
Actinobacteria 7.6 ± 2.8 3.3 ± 1.2 4.3 ± 1.2 4.0 ± 1.7 0.66 
A. muciniphila 0.5 ± 0.3 0.2 ± 0.1 1.0 ± 0.6 0.6 ± 0.4 0.15 
Firmicutes 26.9 ± 2.7 18.6 ± 2.2 18.6 ± 2.4 17.7 ± 2.0 0.93 
Bacteroidetes 63.7 ± 4.4 76.6 ± 2.5 74.9 ± 2.8 76.5 ± 2.2 0.77 

Absolute (log10) and relative (%) abundances of bacterial phyla and species in 1 g wet weight of 
fecal samples. A, Akkermansia; B, bacteria; B/F-ratio, Bacteroidetes/Firmicutes-ratio; F, 
feacalibacterium; M, methanobrevibacter. P-value for statistical significance for time*treatment 
interactions. Values are given as means ± SEM. 
 

Relation between (changes in) microbiota composition and fat oxidation following 

E+R supplementation 

Strikingly, baseline Bacteroidetes abundance was significantly correlated with the E+R-

induced increase in postprandial fat oxidation (AUC) (r=0.855, P=0.01, Figure 7.1A) in 

men. This correlation remained significant after adjustment for mean fat oxidation 

(dependent variable: Δ(week 12 - week 0) fat oxidation (AUC), independent variables: 

Bacteroidetes abundanceweek 0, Std.β=0.865, P=0.03; mean(week 0, week 12) fat oxidation 

(AUC), Std.β =-0.057, P=0.84). Moreover, the Bacteroidetes/Firmicutes ratio was 

significantly correlated with postprandial fat oxidation (r=0.813, P=0.03). The abundance 

of Firmicutes was not related to changes in fat oxidation (r=-0.191, P=0.68). Other bacterial 

groups showed no significant association with fat oxidation (data not shown). The E+R-

induced reduction in the abundance of Bacteroidetes and F. prausnitzii in men was, 
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however, not related to the observed changes in fat oxidation und oxidative capacity 

following E+R supplementation as compared to PLA. Likewise, no significant relationship 

was found between (changes in) gut microbiota composition and skeletal muscle 

mitochondrial oxidative capacity. 

In women, no significant associations were observed between (changes in) gut microbiota 

composition and E+R-induced effects on fasting and postprandial fat oxidation (Figure 

7.1B for baseline Bacteroidetes and postprandial fat oxidation).  

	

Figure 7.1. Correlation between baseline Bacteroidetes abundance and the E+R-induced 

increase in postprandial fat oxidation 

Baseline Bacteroidetes abundance significantly correlated with A) the increase in postprandial fat 
oxidation in men (n=7, P=0.03) but B) not in women (n=7, P=0.68). The increase in fat oxidation is 
expressed as ΔWeek12-Week0, calculated from the relative contribution of fat oxidation to total energy 
expenditure (%).  
 

Discussion 

Dietary polyphenols have been associated with a variety of health benefits related to 

chronic metabolic and inflammatory diseases such as obesity, diabetes and cardiovascular 

diseases 11,13,20,21. Accumulating evidence indicates that the gut microbiome influences 

metabolic health 5,6, but very few studies have examined the effects of dietary interventions 

on the gut microbiota. Interestingly, polyphenol supplementation may affect gut microbiota 

composition and, consequently, metabolic health 28,38. Here, we report that men show a 

pronounced higher abundance of Bacteroidetes as compared to women. Furthermore, 12 

weeks of E+R-supplementation decreased the fecal abundance of Bacteroidetes and tended 
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to reduce F. prausnitzii in men, whereas no alterations were found in women. Interestingly, 

our data indicate that baseline Bacteroidetes abundance seems to be involved in the E+R-

induced increase in fat oxidation in men, but not in women. 

Previous studies have demonstrated gender differences in gut microbiota composition in 

humans 7,39, which may at least partly be explained by differences in sex hormones40,41. 

Alternatively, early life acquisition (use of antibiotics) 42 and lifestyle (local environment, 

eating and defecation pattern) 43,44 may underlie inter-individual variation, and may also 

contribute to gender-specific microbiota composition. The present study, therefore, 

examined the effects of prolonged polyphenol supplementation on gut microbiota 

composition in a gender-specific manner. Interestingly, we found that E+R supplementation 

reduced the abundance of Bacteroidetes but not Firmicutes in men, which resulted in a 

decreased Bacteroidetes/Firmicutes ratio following 12-wk E+R supplementation. In line 

with our findings, polyphenols seem to have anti-microbial characteristics45, most likely 

because of their chelating properties on iron, which is an important oligo-element for heme-

utilizing bacteria 46. In contrast to most previous studies (reviewed in 27,38), we did not 

observe any polyphenol-induced prebiotic effects on Firmicutes abundance in overweight 

and obese humans. 

Next, we investigated whether microbial species and phyla relate to host metabolism, as has 

previously been suggested 2,7,28,39,43. Intriguingly, we found that a high abundance of 

Bacteroidetes at baseline was correlated with a more pronounced E+R-induced increase in 

postprandial fat oxidation in men. 

Only 5-10 % of the ingested polyphenols are absorbed in the small intestine 47, and the 

majority is transferred to the colon where they are subjected to microbial metabolism 48. 

Interestingly, the produced polyphenolic metabolites show a high inter-individual 

variability, which may be dependent on the gut microbiota 49. These metabolites seem to 

have distinct and/or synergistic effects on peripheral tissues 50,51. Bacteroidetes contain 

more glycan-degrading enzymes 52, and may therefore facilitate diffusion of polyphenols 

and/or related metabolites through the intestinal barrier, thereby enhancing bioavailability. 

Although our data should be interpreted with caution, it is tempting to postulate that a high 

baseline abundance of Bacteroidetes might allow a more pronounced improvement in fat 

oxidation following polyphenol supplementation. In fact, it has been proposed earlier that 

metabolic health status might determine the effect of R supplementation on host 
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metabolism 53. Bacteroidetes abundance appears to be related to markers of impaired 

metabolic health 54. Moreover, Bacteroidetes abundance was related to low fecal short-

chain fatty acid concentrations 55, which may stimulate fat oxidation in overweight humans 
56,57. Noteworthy, in the present study, a higher abundance of Bacteroidetes in men was 

paralleled by a more unhealthy metabolic profile (increased fasting glucose and 

inflammatory markers) as compared to women, which might support this notion.  

Changes in microbial composition after pharmacological interventions have been related to 

changes in host physiology 5,6. In line, polyphenol supplementation in rodents reduced 

adipose tissue mass and ectopic fat accumulation, insulin resistance and inflammation, and 

these improvements were related to changes in microbiota composition 14-16,18,19,58. In the 

present study, however, we did not find significant correlations between the changes in gut 

microbiota composition and other metabolic parameters beside fat oxidation after E+R 

supplementation. Queipo-Ortuño et al. 28 have reported previously that effects of red wine 

polyphenol supplementation on blood pressure, plasma triacylglycerol, cholesterol and 

CRP concentrations were linked to changes in microbial composition. Thus, the ability of 

microbiota to mediate effects on physiological parameters clearly warrants further 

investigation 59-61. 

The present findings in women should be interpreted with some caution, since we did not 

obtain information on the phase of the menstrual cycle. Moreover, the use of oral 

contraceptives (11 out of 19 female participants) may have influenced substrate metabolism 
62 and intestinal microbiota composition, as has already been reported for vaginal 

microbiota 63. Lastly, although determination of phyla-abundances has been used as 

valuable indicator of the impact of microbiota on substrate metabolism2, a detailed 

microbial phenotyping using state-of-the-art next generation sequencing may provide 

additional insight into relevant bacterial species in future studies 64. Importantly, within the 

phyla Bacteroidetes, different genera, Bacteroides and Prevotella, do have different 

metabolic traits and define a host’s enterotype 9,65. 

In conclusion, we demonstrated that overweight and obese men and women differ in their 

intestinal microbiota and in their susceptibility to intervention-effects. Whereas E+R 

supplementation for 12 weeks reduced abundance of Bacteroidetes in men, no effects were 

observed in women. Furthermore, Bacteroidetes abundance at baseline was a significant 

predictor for the E+R-induced increase in fat oxidation in men. Future studies are warranted 
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to further explore gender differences in gut microbiota composition and its relationship 

with metabolic outcome after interventions. Furthermore, state-of-the-art sequencing 

techniques to determine microbiota composition should be combined with metabolomics 

approaches to assess polyphenol metabolite profiles to obtain better insight into inter-

individual variability in the response to polyphenol supplementation on metabolic health in 

humans.  
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Over the past decades, obesity has evolved as one of the major health concerns of Western 

society. The excessive amount of fat mass does not only impair physical performance, but 

has significant impact on physiological and psychological function and health 1-5. Impaired 

metabolic flexibility, defined as the capacity of skeletal muscle to increase fat oxidation 

upon high availability and to suppress fat oxidation during insulin-stimulated conditions, 

may favor fat storage above oxidation 6. Indeed, this capacity to regulate fat oxidation has 

been suggested to be impaired in the obese insulin resistant state, and may contribute to 

ectopic lipid accumulation interfering with insulin signaling 7-9.  

Strategies to improve fat oxidation may be helpful to increase metabolic flexibility and 

prevent or improve insulin resistance and related cardiometabolic diseases. Lifestyle 

interventions aiming at weight loss and increasing physical fitness should be implemented 

as first treatment option. However, ~30 % of subjects enrolled in lifestyle interventions did 

not achieve any intervention goal or discontinued participation 10,11. Strikingly, metabolic 

parameters at baseline were poorer and metabolic improvements (glucose tolerance) were 

less pronounced in drop-outs than in completers in one study 11, and insulin sensitivity 

improved to a greater extent in metabolically unhealthy subjects than in ‘healthier’ subjects 

after weight-loss intervention 12. These findings indicate that people who most urgently 

need intervention and benefit most from intervention have an increased tendency to drop-

out. Thus, additional treatment strategies are required because incidence rates of obesity-

related cardiometabolic diseases are still increasing at an alarming rate.  

Therefore, in this thesis, we investigated the potential of dietary polyphenols to modulate 

substrate and energy metabolism, which may contribute to the prevention of insulin 

resistance and related metabolic diseases in the long term.  

Short-term effects of polyphenol supplementation 

Green tea polyphenols, specifically epigallocatechin-3-gallate (EGCG), have been 

suggested to reduce body weight and insulin resistance 13, possibly through effects on fat 

oxidation and energy expenditure 14.  

Therefore, we investigated in Chapter 2 whether 3 days supplementation with EGCG 

increases postprandial fat oxidation in overweight subjects, and whether an increased 

skeletal muscle lipolysis may be involved. We found that EGCG supplementation did 

neither affect postprandial fat oxidation nor skeletal muscle lipolysis. Previously performed 
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studies including overweight subjects and using an identical macronutrient composition of 

the meal (35 energy% fat), have found that EGCG stimulated postprandial fat oxidation 
15,16. This discrepancy may have been caused by an extra dose of 135 mg EGCG 1 h prior to 

the test-meal 15. Notably, in contrast to previous studies, we have included women (15/24) 

in our study, who appear generally less susceptible to dietary interventions 17-19. 

Although EGCG-mediated effects on postprandial fat oxidation were not significant in our 

study, we found that EGCG supplementation reduced skeletal muscle interstitial lactate 

concentrations as compared to placebo, whilst skeletal muscle blood flow and interstitial 

glucose concentration were unchanged. This may be indicative of a reduced glycolytic flux, 

hence a more oxidative metabolism, which has also been reported by others using EGCG-

rich supplements 20. Higher doses might increase the benefit of EGCG supplementation on 

postprandial fat oxidation 14,15. However, Berube-Parent et al. 21 showed that increasing the 

EGCG dose yielded no additional benefit on 24-h energy expenditure or substrate 

oxidation, suggesting that other factors are more likely to explain the variation between 

studies. In fact, higher doses of antioxidants may induce other or opposite effects as 

compared to lower doses 22.  

High doses of dietary antioxidative supplements may induce large changes in oxidative 

stress that may impair cellular function, whereas small and confined changes confer 

positive benefits, for example mitochondrial biogenesis, as stated in the hypothesis of a 

hormetic response 23. In that respect, high doses of resveratrol (1500 mg/d) were found not 

effective with respect to improving mitochondrial capacity and insulin sensitivity 24 as 

compared to others supplementing 10 (150 mg/d) 25 or 20 times (80 mg/d) 26 less. 

Additionally, Price and colleagues 27 found higher variability in outcome measures in high-

dose, as compared to low-dose supplementation in rodents. 

Based on these studies, we postulated that greater effects on oxidative metabolism might be 

achieved by combining “low dose” polyphenols with distinct and synergistic mechanisms 

of action as compared to single high-dose supplementation. 

Combining EGCG and resveratrol - Are two better than one?  

In diet-induced obese rodents, resveratrol prevented insulin resistance, ectopic fat 

accumulation and inflammation, which were accompanied by increased mitochondrial 

oxidative pathways, induced by activation of the AMPK-SIRT1-PGC1α pathway 28,29. 
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Therefore, we investigated in Chapter 3 whether the combination of polyphenols with 

distinct mechanisms of action had beneficial effects on lipolysis and fat oxidation. We 

performed a placebo-controlled randomized crossover study with 18 men and women, who 

received supplementation with EGCG and resveratrol for 3 days (E+R, 270 mg/d and 200 

mg/d) or E+R plus additional soy isoflavones (E+R+S, 80 mg/d, ~65 % genistein, ~30 % 

daidzein). At day 3 of the supplementation protocol, we performed a high-fat mixed meal-

test (61 energy% fat) and measured substrate oxidation and plasma metabolite 

concentrations using indirect calorimetry and blood sampling, respectively. Interestingly, 

E+R increased resting energy expenditure after an overnight fast and during the mid-

postprandial period (2-4 h) as compared to placebo. Furthermore, metabolic flexibility, 

measured as the increase in RQ from fasting to postprandial conditions, increased in men 

after E+R supplementation, but not in women.  

Under healthy conditions, resting energy expenditure is determined by mitochondrial 

respiration through two mechanisms. First, mitochondrial respiration increases upon 

increased energy supply, which activates mitochondrial complexes, pumping protons across 

the inner mitochondrial membrane and thereby increasing the proton gradient across the 

mitochondrial membrane (membrane potential).  

However, no changes in plasma metabolite, insulin or norepinephrine concentrations were 

observed; hence the hypothesized mechanism of a prolonged β-adrenergic stimulation 

through inhibition of norepinephrine breakdown by EGCG 14 does not seem to explain our 

findings. Alternatively, both EGCG and resveratrol may have activated AMPK, as 

previously reported 25,28-30, which would lead to an increased substrate supply of 

intracellular stored energy and oxidation 31. Intriguingly, resveratrol had no effect on 

mitochondrial respiratory enzymes upon acute exposure or during insulin-stimulated 

conditions or on ex vivo mitochondrial respiration in isolated human skeletal muscle fibers 

directly exposed to resveratrol 32. 

When membrane potential increases, more energy is required to pump additional protons 

against the gradient. This limits respiration induced by an increased supply. Thus, secondly, 

respiration is facilitated by uncoupling or ATP synthesis relieving the protein-motive force 

by proton transport back into the mitochondrial matrix 33. 

A stimulation of uncoupling has been reported after supplementation with EGCG and 

resveratrol in rodents 29,34, but not in obese humans 25. Lastly, resveratrol might have 
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increased adenine nucleotide translocase 2 (ANT2) protein content and therefore facilitated 

ADP influx into mitochondria and increased ADP stimulated respiration 35.  

Importantly, fat is known to have the lowest thermogenic properties 36,37, and obese subjects 

have been characterized by an impaired postprandial thermogenesis as compared to lean 

subjects 38. The stimulating effect of E+R on postprandial energy expenditure should be 

studied for other macronutrient compositions as well, since relative carbohydrate intake 

increases over a lifespan 39. 

Adding soy isoflavones - Are three better than two?  

In the study described in Chapter 3, we investigated whether additional soy isoflavones 

(E+R+S) alters the effects of E+R supplementation. Surprisingly, addition of soy 

isoflavones reversed the effects of E+R on resting energy expenditure and metabolic 

flexibility. It can be speculated that soy isoflavones diminished AMPK activity 

independently 40 or dependent on scavenging of reactive oxygen species (ROS) 41. As 

mentioned, overdosing of antioxidants may act detrimental 23.  

Strikingly, E+R+S increased fasting lipolysis, as indicated by increased plasma free fatty 

acids and glycerol concentrations. The synergistic effect of genistein and resveratrol on 

lipolysis has been demonstrated in vitro in adipocytes 42. Increasing lipolysis may reduce 

lipid accumulation in adipose tissue, but may lead to ectopic lipid storage after long-term 

soy isoflavones supplementation, because no compensatory increase in lipid oxidation was 

observed. Therefore, we concluded that soy isoflavones may not provide additional benefit 

to E+R supplementation under the investigated conditions. 

Translation to long-term potential 

The studies described in Chapters 2 and 3 assessed the effects of short-term polyphenol 

supplementation. These data show that E+R increases energy expenditure in both males and 

females, possibly mediated by an increased mitochondrial respiration, and that E+R may 

improve substrate regulation in men but not women; effects that we did not observe after 

EGCG supplementation alone. The increased energy expenditure after high-fat meals may 

be a valuable strategy to contribute to improved body weight control through effects on 

energy balance. To draw conclusions concerning the impact of these findings on the risk of 

developing chronic metabolic diseases, it is highly important to also examine more long-

term effects of this intervention. Without compensatory mechanisms, the increased energy 
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expenditure we found with E+R supplementation would translate into a weight loss of ~0.7 

kg after 12 weeks. According to findings in the US Diabetes Prevention Program, this 

amount of weight loss reduced the risk for diabetes by 11 % (16 % per kilogram) 43. 

Moreover, the improvement of metabolic flexibility, as we observed in males, may 

contribute to insulin sensitivity as seen after body weight loss of ~15 % in obese insulin-

resistant subjects 44. 

Therefore, in Chapter 4, we performed a study to investigate whether the increase in 

energy expenditure induced by 3 days E+R supplementation would translate into increased 

insulin sensitivity after long-term E+R supplementation in overweight and obese men and 

women. To this end, 42 subjects received E+R (n=20) or placebo (n=22) for 12 weeks in a 

randomized, double-blind parallel study (38 completed the study, n=18 and n=20, 

respectively). Before and after intervention, peripheral, hepatic and adipose tissue insulin 

sensitivity was assessed by means of a hyperinsulinemic-euglycemic clamp with primed 

co-infusion of a [6,6-2H2]-glucose-tracer. To investigate mechanisms underlying a potential 

improvement in insulin sensitivity, we measured body composition, performed a high-fat 

mixed meal-test and collected skeletal muscle and adipose tissue biopsies.  

Adipose tissue cell turnover 

As mentioned in Chapter 5, we report that 12 weeks E+R supplementation did not affect 

adipocyte size as compared to placebo in overweight/obese subjects. Surprisingly, the 

adipose tissue microarray data indicated that adipogenic gene expression was reduced by 

E+R supplementation. Interestingly, we observed a concomitant reduction in gene 

expression of autophagy and apoptosis markers, suggesting that adipocyte turnover was 

reduced after E+R supplementation. This might be interpreted in two manners.  

First, a low turnover rate of adipocytes may reflect a less flexible adipose tissue metabolic 

phenotype. Despite reduced expression of genes involved in adipocyte turnover, we did not 

observe changes in adipocyte size. In contrast, previous studies found that low adipocyte 

turnover was related to hypertrophic, dysfunctional AT 45. Moreover reduced TAG 

turnover, indicated by reduced expression of lipid metabolic pathways, were related to 

obesity 46 and familial combined hyperlipidemia 47. Thus, although in conditions of energy 

balance, as in the present study, lower cell turnover may not impair metabolic function, 

reduced adipocyte generation may lead to adipocyte hypertrophy and, consequently, insulin 
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resistance in the long term 48, especially in situations where weight gain occurs (e.g. during 

aging) 49. 

Second, we found a down regulation of inflammatory signaling pathways. Importantly, 

immune cells can make up to for 50 % of cells in adipose tissue. Thus, the ‘adipose tissue’ 

gene expression pattern is the result of combined cell-specific gene expression within the 

tissue 50. The observed downregulation of inflammatory signaling pathways following E+R 

supplementation may indicate that adipose tissue inflammation is at least partly reversed, 

which might preserve tissue function and ameliorate the progression of chronic 

inflammatory diseases 51,52. 

Interestingly, the expression profile of genes and proteins related to mitochondrial 

biogenesis and oxidative phosphorylation were downregulated in adipose tissue following 

E+R supplementation. This might be a consequence of reduced energy requirements of 

cellular processes that are involved in cell turnover. These expression patterns are opposite 

to those observed in skeletal muscle, suggesting a tissue-specific effect of combined 

polyphenol supplementation on gene expression. 

Skeletal muscle mitochondrial capacity 

In line with the findings in the short-term study, E+R supplementation significantly 

increased oxidative metabolism after 12 weeks. Resveratrol and EGCG have been shown to 

activate AMPK and its downstream target PGC-1α 25,28-30, the master activator of 

mitochondrial biogenesis 53, which likely contributes to the increased mitochondrial 

capacity in the present study. Transient increases in reactive oxygen species (ROS) may 

induce mitochondrial biogenesis in skeletal muscle after high-fat diet- or exercise-induced 

ROS production 54,55. ROS-induced Ca2+-release stimulates Ca2+/calmodulin-dependent 

protein kinase II (CAMKII), an activator of AMPK-mediated mitochondrial biogenesis 56. 

This pathway is however unlikely to account for increases of mitochondrial capacity in our 

study because the antioxidant capacity of polyphenols would rather cause ROS scavenging 
57,58.  

Skeletal muscle oxidative capacity was increased by 9 % (14 % on a lipid substrate) in the 

present study, which was accompanied by increased expression of proteins involved in 

oxidative phosphorylation. Interestingly, we did not observe a specific increase in 

mitochondrial mass (ratio NADH dehydrogenase/lipoprotein lipase) or the oxidative 
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capacity per mitochondrion, pointing towards inter-individual variability in response 

regarding increases in mass and function. It has previously been shown that resveratrol 

supplementation (150 mg/d) induced a comparable increase (~10 %) in respiratory capacity 

after 4 weeks 25. It may well be that this increase has also occurred in our study in the early 

phase of the intervention. In line, gene expression of mitochondrial biogenesis pathways 

was not increased after 12 weeks, thus we do not expect a further increase in mitochondrial 

oxidative capacity when supplementation had been continued for a longer period of time.  

Mitochondrial function and oxidative stress 

Persistent high ROS production, as seen in skeletal muscle and adipose tissue of obese 

insulin resistant subjects 59,60, impairs protein function, induces DNA damage and activates 

inflammatory pathways via c-Jun NH2-terminal kinase (JNK) and nuclear transcription 

factor-κB (NFκB), which ultimately may lead to insulin resistance 59,61,62. Also, ROS can 

impair mitochondrial enzymes through downregulation of mitochondrial biogenesis and 

activity 63. Interestingly, antioxidants acting in the cytosol (catalase, tetrakis-(benzoic 

acid)porphyrin (MnTBAP)) reduced age- or diet-induced ROS production and rescued 

mitochondrial function 64,65, whereas antioxidants targeting mitochondrial complex I and III 

did not improve mitochondrial function 66. Thus, a reduced ROS emission may be an 

alternative mechanism that has contributed to the increased mitochondrial function 

observed in our study, besides the earlier suggested AMPK activation (Chapter 4).  

Mitochondrial capacity and substrate oxidation  

In line with a higher mitochondrial capacity in skeletal muscle (9-14 %), we observed an 

increased fat oxidation during fasting and postprandial conditions of 30 % in E+R vs. 

placebo. This was accompanied by a reduced absolute and relative (to EE) carbohydrate 

oxidation, whereas energy expenditure remained unchanged. Since the increased fat 

oxidation was not observed after 30-day resveratrol supplementation 25, the present findings 

may be explained by the addition of EGCG. Indeed, it has previously been shown that 

EGCG can induce a more oxidative phenotype in the short term, as we reported in Chapter 

2, and exert a stimulatory effect on fat oxidation after a longer supplementation period 67,68. 

Alternatively, or additionally, this effect might be due to the increased mitochondrial 

capacity. A greater reliance on fat oxidation with increased mitochondrial capacity has been 

suggested by many investigators, although surprisingly little evidence is available. 
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In insulin resistance, increased lipid-intermediates have been shown to inhibit ANT 69,70. 

Moreover, a reduced ability of ADP to stimulate mitochondrial respiration (ADP 

sensitivity) has been reported in subjects with a reduced respiratory capacity 71,72. A lower 

ADP availability and sensitivity leads to increased cytosolic ADP concentrations, signaling 

low energy status. Consequently, cytosolic ADP stimulates the glycolytic flux through 

activation of glycogen phosphorylase and pyruvate dehydrogenase 73,74, whereas the rate-

limiting enzyme of fat oxidation, CPT-1, is not stimulated by ADP 75,76. Consequently, 

glycolytic energy production quickly overrules fat oxidation upon increased ADP 

concentrations. Interestingly, resveratrol has been shown to increase ADP stimulated 

respiration in ZDF rats by increasing ANT2 expression 35, thereby facilitating oxidative 

ATP production. Moreover, resveratrol increased acyl-CoA stimulated respiration in the 

rodent model, pointing towards a preference towards fat oxidation 57. With an increased 

mitochondrial capacity, as shown after E+R supplementation, skeletal muscle can produce 

the same amount of ATP at lower ADP concentrations 71. Therefore, less glycolytic energy 

is required and glycogen breakdown is limited 72.  

Mitochondrial function and insulin sensitivity  

There is substantial debate with respect to the (causal) relationship between mitochondrial 

dysfunction and insulin resistance 77-79. Mitochondrial abnormalities, including reduced 

oxidative capacity, can accelerate progression of insulin resistance and subsequent organ 

dysfunction via increased ROS production 79 and accumulation of lipid-intermediates 80. On 

the other hand, insulin resistance may contribute to mitochondrial dysfunction 81. Contrary 

to the model, in which both deteriorate, defects in either insulin resistance or mitochondrial 

function might induce a compensatory increase in each other. In order to maintain energy 

provision, reduced mitochondrial oxidative ATP production may be compensated by an 

increased AMPK activity, leading to enhanced glucose uptake and glycolysis, and vice 

versa 77. However, this compensation hypothesis derives from either pathological 

conditions or genetically modified animal models with severe mitochondrial deficiency. As 

discussed, transient increases in mitochondrial capacity, despite insulin resistance, after 

overeating 54 need to be distinguished from those in obese and diabetic conditions, caused 

by a sedentary lifestyle and overeating, in which both mitochondrial function and insulin 

sensitivity are reduced 53,82-84.  
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Insulin sensitivity 

We hypothesized that improvements in fat oxidation and mitochondrial oxidative capacity, 

as we indeed observed after 12 weeks E+R supplementation, would translate into increased 

peripheral insulin sensitivity by reducing the accumulation of TAG and lipid metabolites. 

In Chapter 4, we report that peripheral, hepatic and adipose tissue insulin sensitivity were 

not affected by 12 weeks supplementation with E+R. In line with unchanged insulin 

sensitivity, gene expression profiles in adipose tissue and skeletal muscle were not 

significantly altered with respect to insulin signaling pathways, lipid accumulation in 

skeletal muscle was unchanged and markers of systemic inflammation were not affected by 

the intervention. An unchanged insulin sensitivity is in line with previous studies that 

assessed insulin sensitivity by means of a hyperinsulinemic-euglycemic clamp in subjects 

with comparable insulin sensitivity at baseline of resveratrol supplementation studies 18,24,85. 

Importantly, however, we are the first to report that E+R improved skeletal muscle 

mitochondrial capacity, TAG concentrations and tended to reduce visceral adipose tissue 

(AT) mass, but these effects did not translate into improved peripheral, hepatic or adipose 

tissue insulin sensitivity.  

The cross-sectional associations between impaired mitochondrial capacity and insulin 

resistance include diabetic patients and non-diabetic controls 53,82-84, thus a significantly 

broader range as in the present study. Interestingly, in line with our findings, it has been 

suggested that these associations were not strong enough within a defined group of obese or 

diabetic patients 86. Moreover, the impact of the 10-15 % improvement of mitochondrial 

capacity may be too small to impact insulin sensitivity after 12 weeks. Nevertheless, the 

stimulation of fat oxidation by 30 % may prevent mitochondrial overload and dysfunction 

and therefore accumulation of detrimental lipid intermediates and ROS production. 

Moreover, the relatively small increase in skeletal muscle mitochondrial capacity might, in 

the long term, prevent insulin resistance by delaying deteriorations associated with an 

impaired mitochondrial function. 

Insulin sensitizing effects of EGCG and resveratrol have been proposed earlier. This was 

mainly based on effects on fasting glucose and insulin concentrations (e.g. HOMA-IR). The 

proposed insulin sensitizing effects were more pronounced in diabetic subjects (resveratrol) 
87 and in studies with high-quality (EGCG) 88, assessed by the Jadad-scale, which scores 

clinical trials based on reported blinding, randomization and drop-outs 89. A reduction of 
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fasting glucose, insulin and HOMA-IR may, however, rather reflect hepatic insulin 

sensitivity. This would be in line with reduced liver fat in obese subjects after 30 days of 

resveratrol supplementation 25, although no effect of resveratrol on hepatic insulin 

sensitivity, lipid content or steatosis was observed in NAFLD patients 85. In the latter 

studies, fasting plasma glucose and insulin concentrations were not affected. In our study, 

subjects were classified as normoglycemic (fasting concentrations and OGTT), and insulin 

resistance was less progressed than in other obese populations based on a hyperinsulinemic-

euglycemic clamp 90. Therefore, we cannot exclude the possibility that E+R 

supplementation might have beneficial effects on insulin sensitivity through effects on lipid 

metabolism in a more insulin resistant population.  

Body weight maintenance  

The data after 12 weeks combined polyphenol supplementation of unchanged body weight 

and composition suggest that the increase in energy expenditure that we observed after 3 

days of E+R supplementation was transient. It is possible that the previously suggested 

effect of EGCG, namely stimulation of thermogenesis 14, may have counteracted the caloric 

restriction-like effects of resveratrol 25. Although energy balance was not affected by 12 

weeks E+R supplementation, fat oxidation was significantly increased. Flatt 36,91 

hypothesized that insufficient fat oxidation causes glycogen depletion, which promotes 

food intake 92. Although pronounced effects on adiposity appear only possible with changes 

in energy expenditure, excretion or intake, which we did not observe after 12 weeks 

supplementation 93, the increased fat oxidation in the present study may drive a negative fat 

balance and spare glycogen stores and may therefore have beneficial effects on body 

weight regulation on longer terms 94.  

Ectopic fat accumulation  

Thus, combined E+R supplementation has the potential to reduce ectopic lipid 

accumulation and therefore may prevent or reverse insulin resistance. 

Whereas subcutaneous AT mass and morphology were unchanged after 12 weeks E+R 

supplementation, visceral AT mass tended to be decreased. This may reduce the risk of 

developing cardiometabolic diseases, since visceral AT mass is related to cardiovascular 

and metabolic risk 95-97.  
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While the reduction of visceral AT in our study may have caused a transient increased FFA 

flux towards the liver 98, this increased lipid availability might have contributed to increase 

hepatic fat oxidation. Of note, since substrate oxidation was assessed by indirect 

calorimetry, we cannot specify the contribution of the liver to the observed increase in 

whole body fat oxidation. In rodents, EGCG and resveratrol supplementation have both 

been shown to reduce visceral AT 99,100 and to increase hepatic fat oxidation 101,102. This 

increase may have contributed to reduce hepatic lipid accumulation in obese humans after 

resveratrol supplementation 25.  

There are two likely explanations for the visceral AT reduction. First, visceral AT is more 

sensitive to lipolytic stimuli, which may explain the depot-specific effect. As the 

contribution of visceral lipolysis to plasma FFA is minimal 103, this may explain the 

unchanged circulating FFA concentrations in our study. Second, the present data of 

improved postprandial plasma triacylglycerol concentration and unchanged 

intramyocellular lipid content suggests a preferential uptake and oxidation of extracellular 

lipids, which is in line with previous findings 104. The increased fat oxidation may reduce 

lipid availability to visceral AT and may furthermore compensate for an increased skeletal 

muscle lipid uptake that is frequently observed in obese, insulin resistant subjects 105. In 

line, intramyocellular lipid stores are unchanged after intervention, as discussed in Chapter 

4. 

Polyphenol-gut microbiota interaction 

The role of the gut microbiota in host metabolism has been highlighted by many recent 

publications, as reviewed 106-112. In Chapter 6, we were able to contribute to these findings 

by showing that the microbiota composition (Bacteriodetes/Firmicutes-(B/F-)ratio) was 

negatively related to peripheral insulin sensitivity, assessed by the gold-standard technique 

hyperinsulinemic-euglycemic clamp with glucose tracer-infusion in men but not women. 

The relationship between B/F-ratio and peripheral insulin sensitivity in men remained 

significant after adjustment for parameters that have been related to insulin sensitivity, 

including body composition, fiber and saturated fat intake, fat oxidation and markers of 

systemic inflammation. Thus, other factors related to the intestine may underlie the 

association between gut microbiota composition and peripheral insulin sensitivity. These 

may, amongst others, include short-chain fatty acids (SCFA) 113 and glucagon-like peptide 
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1 (GLP-1) 114. Intervention studies in humans showed that microbial transplantation from 

healthy donors to metabolic syndrome patients increased peripheral insulin sensitivity 115, 

whereas decreased peripheral insulin sensitivity has been reported after antibiotic treatment 

in obese subjects 116. Moreover, microbiota composition is affected by diet 117. 

Interestingly, as described in Chapter 7, we found that dietary polyphenol supplementation 

alters microbial composition in a gender-specific manner. In men, but not in women, an 

antimicrobial effect of polyphenol supplementation was shown. Due to the impact of the 

microbiota on host metabolism and the property of polyphenols to affect microbial 

composition, we speculated that E+R-induced effects on fat oxidation might be mediated 

by changes in gut microbiota composition and function. Indeed, we demonstrated that the 

baseline Bacteroidetes abundance was predictive for the stimulatory effect of E+R on fat 

oxidation in men. This suggests that the characterization of the microbiota composition 

might add valuable information to explain variability of dietary interventions on host 

metabolism that has been frequently observed in previous studies. Gender should be 

generally taken into account as modulatory factor, considering the differences in 

physiology 118,119 and microbiota composition 120-122, and the altered susceptibility to 

intervention-effects on physiology 17,26 and microbiota composition (117, present thesis). 
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Implications and future directions 

In this thesis, we describe the effects of polyphenol supplementation on substrate and 

energy metabolism in overweight and obese men and women. The short-term effects of 

combined E+R supplementation of an increased energy expenditure and metabolic 

flexibility (in men but not women) did translate into an increased mitochondrial capacity 

and increased fat oxidation after 12 weeks, whereas body composition and tissue-specific 

insulin sensitivity were not affected. Several important issues need to be addressed in future 

studies to improve our understanding of the potential benefits of polyphenol 

supplementation.  

1. Generally, gender should be put more forward as modulatory factor in metabolic 

research, considering the pronounced differences in metabolism 123. Wherever feasible, in 

basic and applied research, the factor gender should be included in study designs, data 

analyses or interpretation in order to allow qualitative and quantitative conclusion for both 

gender. Importantly, measurements in women should be performed in the same stage of the 

menstrual cycle before and after intervention, if possible.  

2. Based on the short-term studies described in this thesis, it can be concluded that 

polyphenols do not necessarily induce additive or synergistic effects (E+R), but can also 

exert opposing effects (E+R+S).  

3. Due to the heterogeneity in the response to polyphenol supplementation between 

subjects, a more detailed characterization of subjects by means of –omics technologies may 

help to specify subgroups that are more responsive to polyphenol intervention than others. 

These methodologies may additionally help to identify biomarkers that predict the 

intervention success. It has been hypothesized that metabolically compromised subjects 

may benefit more from polyphenol supplementation, but this has not yet been addressed 

directly. 

4. The benefit of polyphenol supplementation on metabolic health parameters and 

exercise performance 68,124,125 has been shown in overweight and obese subjects. It remains 

to be investigated, whether these improvements may increase the effectiveness of lifestyle 

intervention studies. Importantly, additional effects seem more likely in programs aimed at 

increasing daily physical activities rather than on exercise interventions for 2 reasons. First, 

the magnitude of polyphenol interventions on e.g. mitochondrial function (9-14 %) seems 
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to be limited as compared to exercise induced increases of 30 % (combined training 126) up 

to 60 % (resistance training 127). Secondly, antioxidant supplementation may even attenuate 

benefits of exercise by blunting the adaptive oxidative response 128-132.  

5. So far, very little human studies addressed the preventive effect of polyphenols on 

body weight, mitochondrial function and insulin sensitivity during ‘challenged’ conditions 

such as fructose-induced insulin resistance or weight maintenance, during which weight 

gain is more likely, although the first ones were promising 133,134. This preventive effect 

might also be applied to clinical conditions during which physical activity is limited such as 

immobilization during injury and bed rest during illness.  

6. An increased relative fat oxidation has been frequently associated with a reduced 

likelihood to gain weight over many years, not weeks 135. It remains yet speculative 

whether glycogen stores are spared by the shift towards fat oxidation. A more detailed 

investigation of acute hunger and satiety feelings and food intake patterns after polyphenol 

supplementation may offer potential insight. Indices of hepatic glycogen stores and lipid 

accumulation (1H-magnetic resonance spectroscopy, MRS) and lipid fluxes (tracer for 

endogenous and dietary fat) may offer clarification. 

7. To increase insight in the interplay between the metabolic pathways, the 

mitochondrial dynamics and kinetics of lipids, ADP and ROS should be studied in more 

detail, also in the context of polyphenol supplementation.  

8. We and others showed that the gut microbiota is related to its host metabolism and 

may be predictive for intervention effects in men. State-of-the-art techniques to determine 

microbiota composition, microbial metabolomics (of polyphenols) and plasma 

metabolomics may certainly advance our understanding of the interaction between diet, 

supplements, the microbiota and peripheral metabolism 136,137.  

9. A complete new view on the effects of polyphenol supplementation was brought 

by a recent study in rodents, which suggested that the effects of resveratrol on 

mitochondrial function and insulin sensitivity were dependent on the activity of resveratrol 

in intestinal cells 138. It remains to be established, whether polyphenols’ effects in humans 

are dependent on duodenal sensing as well or whether effects are induced directly at 

peripheral tissues, as it has been suggested. Interestingly, a recent study found no direct 

effects of resveratrol on mitochondrial respiration ex vivo in isolated human skeletal muscle 

fibers 32.  
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The obese insulin resistant state is characterized by an impaired regulation of substrate 

metabolism, which seems to be associated with adipose tissue dysfunction, an impaired 

skeletal muscle fat oxidation, ectopic lipid accumulation and systemic low-grade 

inflammation (Chapter 1). These disturbances contribute to the increased risk of 

developing type 2 diabetes mellitus, cardiovascular diseases, and certain types of cancers 

and mental diseases.  

Since about 30 % of the subjects that participate in lifestyle interventions are not successful 

in achieving the intervention goals, additional strategies are required to reduce the growing 

prevalence of obesity and its associated cardiometabolic complications. There is increasing 

evidence that polyphenols such as epigallocatechin-3-gallate, resveratrol and soy 

isoflavones, which are well known for their anti-oxidant action, may also exert beneficial 

effects on energy and substrate metabolism.  

Short-term polyphenol supplementation 

In the first randomized, double-blind placebo-controlled cross-over study (Chapter 2), we 

showed that 282 mg/d epigallocatechin-3-gallate (EGCG) supplementation for 3 days had 

no effect on fat oxidation or energy expenditure in 24 overweight men and women 

(9M/15F). Despite no effects on fat oxidation, EGCG reduced fasting and postprandial 

skeletal muscle lactate concentrations despite comparable muscle blood flow as compared 

to placebo, which may indicate a switch towards a more oxidative phenotype of skeletal 

muscle. 

We postulated the hypothesis that a combination of polyphenols with distinct mechanisms 

of action might induce additive and/or synergistic effects on fat oxidation, thereby reducing 

ectopic lipid accumulation. To investigate this hypothesis, in Chapter 3, the effects of the 

combinations of EGCG and resveratrol (E+R, 282 and 200 mg/d) and E+R plus soy 

isoflavones (E+R+S, 282, 200 and 80 mg/d) on fasting and postprandial fat oxidation were 

examined in 18 overweight subjects (9M/9F) in a randomized, double-blind placebo-

controlled cross-over study. On day 3 of supplementation, energy expenditure, substrate 

oxidation and plasma metabolite concentrations were measured before and after 

consumption of a high-fat mixed meal (2.6 MJ, 61 energy% fat). We demonstrated that 

E+R increased resting and postprandial energy expenditure. Interestingly, metabolic 

flexibility, defined as the shift from fat to carbohydrate oxidation after consumption of a 
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high-fat mixed meal, was improved by E+R in men but not in women. Addition of soy 

isoflavones (E+R+S) abrogated the latter effects, but increased fasting free fatty acid 

concentrations, indicating a stimulation of lipolysis by soy isoflavones. 

Long-term polyphenol supplementation 

Next, we questioned whether the short-term effects of the most promising combination of 

polyphenols, E+R, would translate into long-term benefits on tissue-specific insulin 

sensitivity (Chapter 4). We performed a randomized, placebo-controlled double-blind 

study to assess the effects of 12 weeks combined E+R supplementation on peripheral, 

hepatic and adipose tissue insulin sensitivity, skeletal muscle oxidative capacity, fat 

oxidation, lipolysis and circulating metabolites in 42 overweight and obese, non-diabetic 

subjects (21M/21).  

 

Fat oxidation, mitochondrial capacity and insulin sensitivity 

E+R supplementation increased skeletal muscle oxidative capacity, as evidenced by ex vivo 

respiration measurements using isolated permeabilized skeletal muscle fibers and increased 

in vivo whole-body fat oxidation during fasting and postprandial conditions. These findings 

were supported by an increased expression of genes and proteins involved in mitochondrial 

respiration. Energy expenditure, however, was not significantly altered by 12 weeks E+R 

supplementation. Furthermore, E+R supplementation prevented an increase in plasma 

triacylglycerol concentration during fasting conditions and after intake of a high-fat mixed 

meal as compared to the placebo group. Moreover, visceral adipose tissue mass tended to 

be reduced after E+R supplementation versus placebo. Nevertheless, these beneficial 

metabolic effects did not translate into improved peripheral, hepatic or adipose tissue 

insulin sensitivity assessed during a hyperinsulinemic-euglycemic clamp with [6,6-2H2]-

glucose infusion.  

 

Adipose tissue morphology and gene expression 

Adipose tissue biopsies were collected to determine adipose cell morphology and gene 

expression profiles, as described in chapter 5. Interestingly, microarray analyses of adipose 

tissue revealed that gene expression related to adipose tissue cell turnover was reduced by 

E+R supplementation compared to placebo. No significant effects of E+R supplementation 
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were found on adipocyte morphology and local adipose tissue lipolysis that was assessed in 

vivo before and after a high-fat mixed meal and during the hyperinsulinemic-euglycemic 

clamp. The long-term effect of the E+R-induced downregulation of pathways related to 

adipose tissue cell turnover requires further investigation, since low adipocyte turnover has 

been associated with adipose tissue hypertrophy, dyslipidemia and insulin resistance. On 

the other hand, gene expression of pathways related to oxidative stress, inflammation and 

the immune response were downregulated, which may be indicative of reduced adipose 

tissue inflammation. 

Gut microbiota, gender and insulin sensitivity 

Accumulating evidence suggests that the gut microbiota may contribute to impairments in 

metabolic health. Therefore, we determined the microbiota composition in feces samples 

that were collected from subjects participating in the long-term E+R supplementation study. 

First, we found significant differences in the microbiota composition between men and 

women, with a higher abundance of Bacteroidetes and γ-Proteobacteria in men than women 

(Chapter 6 and 7).  

 

Microbiota composition and insulin sensitivity 

Next, the relationship between gut microbiota composition and insulin sensitivity was 

assessed. We demonstrated a strong inverse correlation between peripheral insulin 

sensitivity and the ratio of the two dominant phyla in the gut microbiota, Bacteroidetes and 

Firmicutes in men but not in women. Strikingly, this relation in men remained significant 

after correction for food intake (saturated fat and dietary fiber), body composition (% body 

fat), fat oxidation and markers of inflammation.  

 

Microbiota composition and polyphenol-induced metabolic effects 

Finally, we investigated whether E+R-induced alterations in the gut microbiota 

composition may have contributed to the improvement in skeletal muscle oxidative 

capacity after E+R supplementation. E+R-supplementation reduced the abundance of the 

Bacteroidetes-phyla and tended to reduce Faecalibacteria prausnitzii in men but not in 

women. The abundance of the phylum Bacteroidetes at baseline was a significant predictor 

for the E+R-induced increase in postprandial fat oxidation in men (Chapter 7), suggesting 
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that the gut microbiota composition may at least partly determine the effects of E+R 

supplementation on fat oxidation.  

Conclusion 

The studies described in this thesis have shown that short-term supplementation of 

epigallocatechin-3-gallate and resveratrol (E+R) increased fasting and postprandial energy 

expenditure. Long-term supplementation (12 weeks) of E+R in overweight and obese men 

and women increased skeletal muscle oxidative capacity as compared to placebo, but did 

not translate into significant effects on tissue-specific insulin sensitivity. Furthermore, the 

intestinal microbiota composition is different between men and women, and is related to 

peripheral insulin sensitivity in men, but not in women. Interestingly, the abundance of the 

phylum Bacteroidetes appears to modulate the effect of E+R supplementation on 

postprandial fat oxidation. Although 12 weeks E+R supplementation did not significantly 

alter peripheral, hepatic and adipose tissue insulin sensitivity and body composition, the 

increase in skeletal muscle oxidative capacity and whole-body fat oxidation may prevent 

the progression of insulin resistance and contribute to a reduced risk of developing obesity-

related cardiovascular disease and type 2 diabetes mellitus in the long term. 
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Obese personen die insulineresistent zijn worden vaak gekenmerkt door een verstoorde 

regulatie van het substraatgebruik, een minder goede werking van het vetweefsel, een 

verlaagde vetverbranding in de spieren, vetopslag in organen zoals de spieren en de lever 

en een verhoogde hoeveelheid ontstekingsfactoren in het bloed (Hoofdstuk 1). Deze 

verstoringen kunnen bijdragen aan een verhoogd risico op het ontwikkelen van type 2 

diabetes mellitus, hart- en vaatziekten en verschillende vormen van kanker en psychische 

aandoeningen.  

Aangezien 30 % van de mensen die proberen hun leefstijl te veranderen de gestelde doelen 

niet bereiken zijn alternatieve strategieën essentieel. Wetenschappelijke studies hebben 

aangetoond dat polyfenolen, zoals epigallocatechin-3-gallate, resveratrol en soja 

isoflavonen, naast hun bekende werking als antioxidant ook positieve effecten op de 

energie- en substraathuishouding kunnen hebben. 

Korte-termijn polyphenol supplementatie 

In de eerste gerandomiseerde, dubbel-blinde, placebo-gecontroleerde cross-over studie 

(Hoofdstuk 2) hebben wij laten zien dat supplementatie van 282 mg/d epigallocatechin-3-

gallate (EGCG) gedurende 3 dagen geen effect op de vetverbranding of het energieverbruik 

had in een groep van 24 mannen en vrouwen (9 mannen,15 vrouwen) met overgewicht. 

Echter, EGCG verlaagde wel de lactaatconcentratie in de spieren voor en na inname van 

een maaltijd vergeleken met placebo, wat kan duiden op een verhoogde oxidatieve 

stofwisseling. 

Onze hypothese was dat combinaties van polyfenolen met verschillende 

werkingsmechanisme aanvullende en/of synergistische effecten op de vetverbranding 

zouden hebben, en daardoor ectopische vetstapeling zouden verlagen. Om deze hypothese 

te onderzoeken hebben wij het effect van combinaties van EGCG en resveratrol (E+R, 282 

en 200 mg/d) en E+R met daarnaast soja isoflavonen (E+R+S, 282, 200 en 80 mg/d) op de 

nuchtere en postprandiale vetverbranding bij 18 proefpersonen met overgewicht (9 mannen, 

9 vrouwen) onderzocht in een gerandomiseerde, dubbel-blinde, placebo-gecontroleerde 

cross-over studie (Hoofdstuk 3). Op dag 3 van de supplementatie werden het 

energiegebruik, vetverbranding en plasma metabolieten voor en na inname van een maaltijd 

met een hoge hoeveelheid vet (2.6 MJ, 61 energie% vet) gemeten. De combinatie van E+R 

verhoogde het nuchtere en postprandiale energiegebruik ten opzichte van placebo. De 
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flexibiliteit van het metabolisme, gedefinieerd als het omschakelen van vet- naar 

koolhydraatverbranding na inname van een maaltijd, verbeterde door E+R supplementatie 

bij mannen, terwijl dit bij vrouwen niet het geval was. Het toevoegen van soja isoflavonen 

aan deze combinatie (E+R+S) deed dit effect verdwijnen. Echter, E+R+S resulteerde in 

hogere concentraties van vrije vetzuren en glycerol tijdens gevaste omstandigheden, wat 

duidt op een hogere vetafbraak (lipolyse). 

Lange-termijn polyphenol supplementatie 

Gebaseerd op bovenstaande bevindingen hebben wij onderzocht of het positieve korte 

termijn effect van de meest belovende combinatie, E+R, zich vertaalde in lange-termijn 

verbeteringen van de insulinegevoeligheid. Hiervoor hebben wij een gerandomiseerd, 

placebo-gecontroleerd, dubbel-blind onderzoek uitgevoerd, waarin de effecten van E+R 

supplementatie gedurende 12 weken op perifere-, hepatische- en vetweefsel-

insulinegevoeligheid, de oxidatieve capaciteit van de spier, de vetverbranding, de lipolyse 

en plasma metabolieten werden bekeken bij 42 mannen en vrouwen (21 mannen, 21 

vrouwen) met overgewicht. 

 

Vetverbranding, mitochondriële capaciteit en insulinegevoeligheid 

E+R supplementatie verbeterde de oxidatieve capaciteit van de spier en verhoogde de 

vetverbranding tijdens gevaste (nuchtere) omstandigheden en na inname van een hoog-vet 

maaltijd (2.6 MJ, 61 energy% vet) in vergelijking met de placebo-groep. Dit ging gepaard 

met een verhoogde expressie van genen en eiwitten die een belangrijk rol spelen in het 

oxidatieve metabolisme in de mitochondriën en de vetverbranding. Terwijl in de placebo-

groep de concentratie triacylglycerol na inname van de hoog-vet maaltijd hoger waren na 

12 weken supplementatie, was deze toename niet aanwezig in de E+R groep. De 

hoeveelheid visceraal vet nam af na E+R supplementatie versus placebo. Deze positieve 

metabole effecten hebben niet geleid tot veranderingen in de perifere-, hepatische- of 

vetweefsel-insulinegevoeligheid. 

 

Vetcelgrootte en genexpressie in het vetweefsel 

Biopten van het onderhuids buikvet werden voor en na de 12 weken supplementatie 

afgenomen om de vetcelgrootte en genexpressie te bepalen (Hoofdstuk 5). Genen, die een 
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rol spelen bij de adipogenese kwamen na E+R supplementatie minder sterk tot expressie in 

vergelijking met de placebo groep. De morfologie en de vetafbraak (in vivo lipolyse) van 

het vetweefsel waren na E+R supplementatie onveranderd. De langere-termijn effect van de 

E+R-geïnduceerde verlaging van de expressie van genen betrokken bij de adipogenese 

dient nader onderzocht te worden, omdat dit in eerder onderzoek in verband is gebracht met 

vergroting van vetcellen (hypertrofie), verstoringen in het lipidenprofiel in het bloed 

(dyslipidemie) en insulineresistentie. Een andere interessant bevinding is dat E+R de 

expressie van genen die betrokken zijn bij oxidatieve stress en het immuun systeem 

verlaagde, hetgeen kan duiden op minder ontsteking van het vetweefsel. 

Darmflora, geslacht en insulinegevoeligheid 

Er komt steeds meer bewijs dat de darmbacterieën (microbiota) een belangrijke rol spelen 

bij verstoringen in de stofwisseling en de algehele gezondheid. Daarom hebben wij de 

microbiota in de ontlasting van de deelnemers aan de lange-termijn E+R supplementatie 

studie bepaald. Ten eerste vonden wij significante hogere hoeveelheden van het fylum 

(stam) Bacteroidetes en van de klasse γ-Proteobacteriën in mannen ten opzichte van 

vrouwen (Hoofdstukken 6 en 7). 

 

Samenstelling van de microbiota en insulinegevoeligheid 

Vervolgens werd de relatie tussen de microbiota en de insulinegevoeligheid bekeken. Er 

was een negatieve relatie tussen de perifere insulinegevoeligheid en de verhouding tussen 

de twee meest voorkomende fyla (stammen) in de darm - Bacteroidetes en Firmicutes - in 

mannen, maar niet in vrouwen (Hoofdstuk 6). Opmerkelijk was dat deze associatie niet 

beïnvloedt werd door voedingsinname (verzadigd vet en voedingsvezels), 

lichaamssamenstelling (% lichaamsvet), vetverbranding en systemische 

ontstekingsfactoren, zo bleek uit een regressie-analyse. 

  

Microbiota en polyfenol-geïnduceerde metabole effecten 

Tenslotte hebben wij onderzocht of de veranderingen in de microbiota samenstelling na 12 

weken E+R supplementatie aan de verbeteringen van oxidatieve capaciteit van de spier 

hebben bijgedragen. E+R supplementatie reduceerde de hoeveelheid van het Bacteroidetes-

fylum bij mannen, maar niet bij vrouwen. Verder liet E+R supplementatie een tendens tot 
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reductie van het fylum Faecalibacteria prausnitzii zien. Opvallend was dat de hoeveelheid 

van het fylum Bacteroidetes voor de start van E+R supplementatie significant gerelateerd 

was aan de toename van de postprandiale vetverbranding na E+R supplementatie in 

vergelijking met placebo-supplementatie (Hoofdstuk 7). Dit suggereert dat de microbiota 

samenstelling bij kan dragen aan het effect van E+R supplementatie op de vetverbranding.  

Conclusie 

De onderzoeken die beschreven zijn in dit proefschrift hebben aangetoond dat korte-termijn 

supplementatie met epigallocatechin-3-gallate en resveratrol (E+R) het gevaste (nuchtere) 

en postprandiale energiegebruik significant verhoogt. Lange-termijn supplementatie (12 

weken) van E+R verbeterde de oxidatieve capaciteit van de spier en verhoogde de 

vetverbranding tijdens gevaste (nuchtere) omstandigheden en na inname van een hoog-vet 

maaltijd in vergelijking met de placebo-groep in mannen en vrouwen, maar had geen effect 

op de insulinegevoeligheid. 

Verder is er een duidelijk verschil in de samenstelling van de darmflora (microbiota) tussen 

mannen en vrouwen. Deze samenstelling was gerelateerd aan de perifere 

insulinegevoeligheid in mannen, maar niet in vrouwen. Bovendien bleek dat de microbiota 

samenstelling bij kan dragen aan het effect van E+R supplementatie op de vetverbranding. 

Hoewel E+R supplementatie gedurende 12 weken geen significant effect had op de 

insulinegevoeligheid en de lichaamssamenstelling, zouden de verhoogde mitochondriële 

capaciteit van de spier en de toegenomen vetverbranding het ontstaan van 

insulineresistentie kunnen voorkomen. Toekomstig onderzoek zal uit moeten wijzen of 

E+R supplementatie gedurende een langere periode dan 12 weken, of supplementatie bij 

mensen met een duidelijke verstoring in het substraat- en/of energiegebruik en de 

insulinegevoeligheid, het risico op het ontwikkelen van overgewicht en gerelateerde 

aandoeningen zoals type 2 diabetes mellitus en hart- en vaatziektes kan verlagen.  
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Bei übergewichtigen, insulinresistenten Menschen ist eine gestörte Regulierung des Fett 

und Energie-Metabolismus’ festzustellen. Charakteristika dieses Zustandes sind unter 

anderem eine verminderte Funktion des Fettgewebes, eine verringerte Fettverbrennung, 

Fettablagerungen in Geweben wie dem Muskel und der Leber und eine systemische 

Entzündung (Kapitel 1). Diese Verstörungen könnten zu einem erhöhten Risiko für die 

Entwicklung von Typ 2 Diabetes Mellitus, Herz-Kreislauf-Erkrankungen, aber auch 

verschiedene Arten von Krebs oder psychische Krankheiten beitragen. 

Weil etwa 30 % der Probanden die Teilnahme an Lebensstil-Interventionen die gesteckten 

Ziele nicht erreichen, sind alternative Maßnahmen daher zwingend notwendig um die stetig 

steigende Prävalenz von Übergewicht und den damit verbundenen Krankheiten zu 

reduzieren. Wissenschaftliche Studien haben gezeigt, dass Polyfenole wie 

Epigallocatechin-3-gallat, Resveratrol und Soja Isoflavone über die bekannte antioxidative 

Wirkung hinaus auch positive Effekte auf Stoffwechselabläufe des Energie- und 

Substrathaushaltes ausüben können. 

Kurzzeit-Studien mit Polyfenol-Supplementierung 

In der ersten randomisierten, doppel-blinden, Placebo-kontrollierten crossover Studie 

(Kapitel 2), zeigten wir, dass täglicher Konsum von 282 mg Epigallocatechin-3-gallat 

(EGCG) über eine Dauer von 3 Tagen keinen Effekt auf die Fettverbrennung oder den 

Energieverbrauch von 24 übergewichtigen Männern und Frauen (9M, 15F) hatte. Dennoch 

hat Epigallocatechin-3-gallate, verglichen mit dem Placebo, die Konzentration von Laktat 

im Muskel trotz unveränderter Durchblutung des Muskels sowohl vor als auch nach einer 

Mahlzeit verringert, was auf einen oxidativeren Stoffwechsel deutet. 

Wir haben die Hypothese aufgestellt, dass eine Kombination von Polyfenolen mit 

unterschiedlichen Wirkungsmechanismen additive und/oder synergistische Effekte auf die 

Fettverbrennung haben könnte und dadurch ektopische Fettablagerungen vermindern 

könnte. Um diese Hypothese zu untersuchen, wurden Kombinationen von 

Epigallocatechin-3-gallat und Resveratrol (E+R, 282 mg/d und 200 mg/d) oder E+R und 

Soja Isoflavonen (E+R+S, 282, 200 und 80 mg/d) auf ihren Effekt auf die Fettverbrennung 

in 18 übergewichtigen Probanden (9M, 9F) in einer randomisierten, doppel-blinden 

Placebo-kontrollierten Studie untersucht (Kapitel 3). Am 3. Tag der Supplementierung 

wurden Energieverbrauch, Fettverbrennung und das Plasma-Metabolit-Profil vor und nach 
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einer Mahlzeit mit hohem Fettgehalt (2.6 MJ, 61 Energie% Fett) gemessen. Die 

Kombination E+R hat den Energieverbrauch vor und nach der Mahlzeit signifikant erhöht. 

Des Weiteren hat sich die Flexibilität des Stoffwechsels, also das Umschalten von Fett- zu 

Kohlenhydratverbrennung nach einer Mahlzeit, bei Männern durch E+R-Supplementierung 

verbessert, aber nicht bei Frauen. Die zusätzliche Gabe von Soja Isoflavonen (E+R+S) hat 

diese Effekte aufgehoben und Konzentrationen freier Fettsäuren und Glyzerol im Nüchtern-

Zustand erhöht, welches ein Indiz für einen erhöhten Fettabbau im Fettgewebe ist. 

Langzeit-Studie mit Polyfenol-Supplementierung 

Basierend auf diesen Ergebnissen haben wir als Nächstes untersucht, ob die nach 3 Tagen 

auftretenden Effekte der vielversprechendsten Kombination, E+R, sich auch in Langzeit-

Verbesserungen der Insulinsensitivität widerspiegeln. Dafür haben wir eine randomisierte, 

Placebo-kontrollierte, doppel-blinde Interventionsstudie ausgeführt, in der wir die Effekte 

einer 12-wöchigen E+R-Supplementierung auf die gewebsspezifische Insulinsensitivität, 

die oxidative Kapazität des Muskels, die Fettverbrennung, die Lipolyse und auf das 

Blutbild von 42 übergewichtigen Männer und Frauen (21M, 21F) untersucht haben. 

 

Fettverbrennung, mitochondrielle Kapazität und Insulinsensitivität 

E+R-Supplementierung verbesserte die oxidative Kapazität des Muskels und erhöhte die 

Fettverbrennung in vivo vor und nach der Mahlzeit. Diese Ergebnisse wurden durch eine 

erhöhte Expression von Genen und Proteinen, die im oxidativen Stoffwechsel der 

Mitochondrien und bei der Fettverbrennung eine Rolle spielen, bestätigt. Der 

Energieverbrauch wurde durch E+R Supplementierung nicht beeinflusst. E+R verhinderte 

den Anstieg der Triazylglyzerol-Konzentrationen vor und nach einer Mahlzeit, reich an 

Fett, den wir in der Placebo-Gruppe festgestellt haben. Des Weiteren hat sich die viszerale 

Fettmasse nach E+R- im Vergleich zu Placebo-Supplementierung verkleinert. 

Nichtsdestotrotz, haben diese positiven metabolen Effekte nicht zu einer Veränderung der 

peripheren, hepatischen oder Fettgewebs-Insulinsensitivität geführt. 

 

Fettzell-Größe und Genexpression im Fettgewebe 

In Biopsien aus dem Fettgewebe unter dem Bauchfett haben wir die Fettzell-Größe und das 

Genexpressionsprofil vor und nach der Intervention analysiert (Kapitel 5). In den 
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Microarray-Analysen zeigte sich, dass Gene der Fettzellerneuerung nach E+R-

Supplementierung weniger stark exprimiert wurden verglichen mit der Placebo-Gruppe. 

Die Morphologie und Fettabbau im Fettgewebe (in vivo Lipolyse) blieben unverändert. Die 

E+R-induzierte Herunterregulierung der Fettzellerneuerung bedarf weiterer 

Untersuchungen, da dies in anderen Studien mit einer Vergrößerung der Fettzellen, einem 

ungünstigeren Lipid-Profil im Blut (Dyslipidemie) und Insulinresistenz in Verbindung 

gebracht worden ist. Interessanterweise, hat E+R in unserer Studie die Expression von 

Genen, die bei oxidativem Stress, Entzündung und im Immunsystem eine Rolle spielen, 

verringert. Dies spricht für einen verminderte Entzündung des Fettgewebes. 

Darmbakterien (Mikrobiota), Geschlecht und Insulinsensitivität 

Zunehmende wissenschaftliche Erkenntnisse deuten darauf hin, dass die Mikrobiota im 

Darm den Stoffwechsel des Menschen beeinflussen kann. Darum haben wir auch von den 

Probanden der Langzeit-Studie die Mikrobiota in Stuhlproben analysiert. Zuerst fanden wir 

signifikant größere Anzahlen des Stammes (Phylums) Bacteroidetes und der Klasse γ-

Proteobacterien in Männern verglichen mit Frauen (Kapitel 6 und 7). 

 

Mikrobiota-Zusammensetzung und Insulinsensitivität 

Als Nächstes haben wir die Beziehung zwischen der Mikrobiota im Darm und der 

Insulinsensitivität untersucht. Wir haben bei Männern, aber nicht bei Frauen, eine starke 

negative Assoziation zwischen der peripheren Insulinsensitivität und dem Verhältnis der 

beiden dominanten Phyla im menschlichen Darm - Bacteroidetes und Firmicutes - 

gefunden (Kapitel 6). Bemerkenswert war, dass diese Assoziation in einer 

Regressionsanalyse nicht durch Ernährung (gesättigte Fettsäuren und Ballaststoffe), 

Körperzusammensetzung (% Körperfett), Fettverbrennung und systemische 

Entzündungsfaktoren verändert wurde. 

 

Mikrobiota und Polyfenol-induzierte metabole Effekte 

Zuletzt haben wir untersucht, ob Veränderungen der Mikrobiota des Darms zu den 

Verbesserungen der oxidativen Kapazität des Muskels durch E+R-Supplementierung 

beigetragen haben. Polyfenol-Supplementierung reduzierte bei Männern, nicht bei Frauen, 

die Anzahl des Bacteroidetes-Phylums und zeigte einen Trend zu einer reduzierten Anzahl 
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von Faecalibacteria Prausnitzii. Des Weiteren konnten wir zeigen, dass die Anzahl des 

Bacteroidetes-Phylums vor Eingang in die Studie signifikant assoziiert war mit dem 

Anstieg der Fettverbrennung durch E+R-Supplementierung (Kapitel 7). Dies suggeriert, 

dass die Mikrobiota den Effekt von Polyfenol-Supplementierung moduliert.  

Schlussfolgerung 

Die Studien, die in dieser Arbeit beschrieben sind, zeigten, dass Epigallocatechin-3-gallat 

und Resveratrol Supplementierung den nüchternen und postprandialen Energieverbrauch 

nach 3 Tagen signifikant erhöhte. Lang-Zeit Supplementierung (12 Wochen) mit E+R hat 

die oxidativen Kapazität des Muskels und die Fettverbrennung in übergewichtigen 

Männern und Frauen stimuliert, aber nicht die gewebsspezifische Insulinsensitivität. 

Die Mikrobiota im Darm unterscheidet sich deutlich zwischen Männern und Frauen. Bei 

Männern, aber nicht bei Frauen, ist diese mit der peripheren Insulinsensitivität assoziiert. 

Die Anzahl des Phylums Bacteroidetes scheint den Effekt von Polyfenolen auf die 

postprandiale Fettverbrennung zu modulieren. 

Obwohl 12 Wochen E+R-Supplementierung die gewebsspezifische Insulinsensitivität und 

die Körperzusammensetzung nicht signifikant verändert hat, könnten die erhöhte 

mitochondrielle Kapazität und die stimulierte Fettverbrennung der Entwicklung von 

Insulinresistenz entgegenwirken. Über einen längeren Zeitraum oder bei Patienten, deren 

Stoffwechsel schon beeinträchtigt ist, könnte das Risiko für das Entwickeln von 

Übergewicht und assoziierten Krankheiten wie Typ 2 Diabetes Mellitus und Herz-

Kreislauf-Beschwerden so verringert werden. 
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Dutch universities are obliged by law to ensure that their research findings impact society. 

The following chapter is dedicated to the valorization of the findings in the present thesis, 

which is defined as ‘process of creating value from knowledge, by making knowledge 

suitable and/or available for social (and/or economic) use and by making knowledge 

suitable for translation into competitive products, services, processes and new commercial 

activities’. In other words, this chapter covers (a) the social and economic relevance of the 

investigated problem, (b) the possible implementations for target groups and further 

research, and (c) possible applications with respect to industrial development and marketing 

of the combined polyphenol-approach, as investigated in this thesis, and to dietary 

intervention studies in general. 

Social and economic relevance 

The prevalence of obesity has reached an epidemic dimension and is continuously 

increasing all over the world. Overweight and obesity have been defined by the World 

Health Organization as ‘abnormal or excessive fat accumulation that may impair health’, 

indicating that obesity relates and predisposes to a variety of diseases such as type 2 

diabetes mellitus, cardiovascular diseases, certain types of cancer and depression. 

Consequently, obesity reduces the quality of life and causes around 2.8 million deaths each 

year worldwide 1. 

The European Commission estimated that obesity costs represented 7 % of its total health 

care spending in 2006, which equates to around €81 billion per year in 2012 2. Another 10 

% of healthcare expenditures were spent on type 2 diabetes mellitus, estimated by the 

London School of Economics 3. Taking into account absenteeism, early retirement and 

social benefits, the costs of obesity- and diabetes-related health impairments in the 

European Union added up to around €400 billion in 2010 4. 

Approximately 30-40 % of the European population is using dietary supplements, of which 

half are non-vitamins 5. The retail value in 2009 was already €4 billion in Europe and 

increasing, creating 500.000 jobs. However, the scientific evidence for health benefits of 

such supplements is poor as compared to their marketing claims. This is indicated by the 

great inconsistency in scientific studies and the lack of approved health claims for 

polyphenolic supplements on energy and substrate metabolism by the European Food 

Safety Association. Thus, it remains to be investigated how effective this money is spent. 
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Target groups 

The aim is to make all results described in this thesis available for the scientific community 

through publication in international peer-reviewed journals. Beyond academia and 

academic journals, newspaper articles have been published on our research, which has 

enabled a broader audience to take notice of our findings. 

By performing randomized, clinical trials with human subjects, scientific evidence can be 

acquired on specific supplements and their effects in different groups of subjects. These 

studies are inevitable in order to organize, control and align the overwhelming amount of 

information on nutrition, diets and supplements that is presented by the media every day. 

Evaluation of such studies by independent institutions, non-profit organization or others 

(e.g. European Food Safety Authority, Netherlands Nutrition and Health Council) may help 

to generate a synergistic database. In that manner, dietary recommendations can be 

evidence-based and communicated to target groups. As an example for the necessity of the 

mentioned institutions, that communicate science to the media and the public, the beneficial 

effects of E+R that we describe in this thesis might be taken. Our findings of ‘increased fat 

oxidation after E+R supplementation as compared to placebo’ might be misinterpreted by 

the media or cause false hope for consumers (e.g. the idea that it may lead to weight loss). 

However, neither energy expenditure nor body composition or food intake were changed 

after long-term E+R supplementation, as described in this thesis, to scientifically support 

such hopes. It is highly relevant that results are critically reviewed and communicated into 

the right context. 

Activities and products 

In the present thesis, it is described that polyphenol supplementation improved risk factors 

for the development of chronic metabolic diseases (e.g. oxidative capacity, fat oxidation, 

plasma lipids), which led us to conclude that polyphenol supplementation may prevent or 

delay the development of cardiometabolic diseases. Importantly, studies that assess the 

possible benefit of polyphenol supplementation over years need to confirm such claims. 

The diversity in the effects that we have demonstrated in the present thesis (e.g. gender-

specific effects, microbiota-related effects or tissue-specific effects on gene and protein 

expression) indicates that E+R may not be evenly effective in all consumers, or may not 

exclusively exert beneficial effects at all organs. 
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The results of the present studies have provided additional insight in the potential of 

polyphenol supplementation to stimulate whole-body fat oxidation and skeletal muscle 

oxidative capacity. However, we have found that the average effect size is limited due to 

variation in effect between subjects. A valuable approach to increase the beneficial impact 

of polyphenols might be the identification of biomarkers that can predict the susceptibility 

to supplementation. Possible biomarkers may be identified in the human and microbial 

genotype, phenotype and metabolome. Moreover, metabolites of polyphenols may offer 

additional biomarkers due to the possibly extensive metabolism of polyphenols in the 

gastrointestinal system and the liver and their diverse effects.  

With respect to the investigated supplements, it has been suggested that people with 

metabolic impairments or under metabolic challenges may benefit the most from 

polyphenol supplementation. For example, polyphenol-supplementation for 8 weeks had no 

effect on hepatic insulin sensitivity in humans, whereas it prevented fructose-induced 

hepatic insulin resistance, which was observed in the placebo-group after another week 6. 

This preventive effect may be applied to conditions of metabolic impairment and/or in 

situations in which metabolic health deteriorates rapidly. 

In the present thesis, we performed microbiota analysis in a dietary intervention study, 

designed to investigate effects on energy and substrate metabolism. Since we and others 

have shown that the microbiota may have a profound modulatory impact on dietary 

polyphenol interventions, it is highly important to consider the impact of alterations in the 

gut microbiota on energy and substrate metabolism in future dietary intervention studies.  

The benefit of this combined approach is supported by the results of the present thesis and 

may generate broad applicability and perspective for the food supplement industry. The 

combined polyphenol-approach may translate into indefinite market opportunities by 

developing new indication-specific combinations of supplements, or treatment regimens in 

general. 

In general terms, it might be considered to produce polyphenol-enriched foods (e.g. 

resveratrol-enriched rice has been developed 7), rather than distributing encapsulated 

supplements. In this manner, aversions against taking pills can be circumvented. 
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Innovation 

Although various multi-ingredient supplements have been developed and promoted, the 

claims on these supplements are almost exclusively based on their antioxidant potential. To 

specifically determine the effects of combined polyphenols on energy and substrate 

metabolism is however novel. By using state-of-the-art methodologies for both in vivo 

measurements and laboratory analyses, we were able to investigate effects on whole-body, 

organ-specific and cellular level. Moreover, the inclusion of the gut microbiota analysis 

allowed to account for a new dimension to the field of nutritional and health sciences, 

which is described in Chapters 6 and 7 of this thesis.  

The work described in this thesis is the result of several (inter)national collaborations with 

both academic and industrial partners. Without the contributions of these partners, it would 

not have been possible to achieve the results described in this thesis, and as such it would 

not have been possible to achieve the scientific advancement that has been made.  

Implementation 

The increased fat oxidative capacity as result of chronic E+R supplementation may be of 

importance in the prevention of chronic metabolic diseases, often characterized by 

impairments in oxidative capacity. This remains to be determined in future studies. As 

discussed above, dietary polyphenol supplementation may be rather applicable as a 

subgroup-based approach as compared to a population-wide approach since intervention 

response may depend on initial metabolic status, gender and possibly other, yet unknown 

factors. In general, prevention is known to be less intensive and less expensive than 

treatment. However, to prevent a disease that develops over decades would require decades 

of supplementation. Obviously, this is not feasible. To prevent unnecessary and 

unsuccessful supplementation regimens, the identification of biomarkers may offer an 

extremely valuable approach to be able to predict effectiveness to polyphenol 

supplementation. By that means, subjects can be characterized by their disease risk profile 

and by their susceptibility to an intervention. We have shown in the present thesis that 

polyphenol supplementation may have the potential to reverse disturbances in lipid 

metabolism, thereby contributing to a reduced risk of developing type 2 diabetes mellitus 

and cardiovascular diseases. The analysis of the gut microbiota may further add to improve 

a more targeted intervention approach.   
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Het is tijd om te danken!!!!!!!!!!!!!!!!!!!!!! 

 

Beginnen wil ik natuurlijk met jou, Ellen. Je hebt me vanaf dag 1 geleerd, dat de 

wetenschap niet zo makkelijk en snel te overzien is, hoe ik het me altijd weer bedacht had. 

Dit begon al ermee, dat ik voor mijn review bedacht had, dat het ‘ontstaan overgewicht’-

deel slechts een pagina hoefde te zijn, maar er nu een inleiding van 46 pagina’s in dit 

‘boekje’ is. Dit is vanuit mijn zicht ook een leuk voorbeeld, hoe de samenwerking tussen 

ons werkte. Je hebt me er altijd toe geleid nog meer aspecten uit te zoeken, die ik nog 

overzien had. Ook ging de focus soms wat ver, heeft dit toch altijd ertoe geleid, dat ik mijn 

horizont kon verbreden en nieuwe dingen geleerd heb, wat me niet alleen tijdens mijn 

verdediging tegemoet zou komen, maar ook in mijn verdere carrière. Jouw 

wetenschappelijk inzicht en je oordeelsvermogen hebben veel indruk gemaakt op mij! Dat 

soms aan een artikel in versie 9 nog eens een andere draai gegeven moest worden, was voor 

mij niet altijd makkelijk te verteren, maar elk artikel is toch in elke versie weer beter 

geworden en het is vooral aan jou te danken, dat dit proefschrift tot stand gekomen is en ik 

daadwerkelijk achter de resultaten durf te staan, die wij hier opgeschreven hebben. Ik denk, 

dat het niet vanzelfsprekend is, dat je zo veel tijd voor je AiO’s neemt en hun toch nooit het 

gevoel geeft, dat ze je lastig vallen ;). 

 

Gijs, mijn co-promotor officieel pas vanaf jaar 3. Je was vanaf begin aan altijd het perfecte 

combinatie tussen professor en AiO. Ik kon zo vaak hoe nodig binnen vallen, kreeg altijd 

(meer dan genoeg ;)) antwoord en kon weer verder. Ik ben tot de laatste dag nog onder de 

indruk, hoe veel tijd je in het werk van mij gestoken hebt, ook al heeft mij dat dan wederom 

meer werk opgeleverd. Ook hiervan zijn de artikelen zeker niet slechter geworden. Je hebt 
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